These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32939726)

  • 21. E-cadherin is required for cranial neural crest migration in Xenopus laevis.
    Huang C; Kratzer MC; Wedlich D; Kashef J
    Dev Biol; 2016 Mar; 411(2):159-171. PubMed ID: 26879760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hmga2 is required for neural crest cell specification in Xenopus laevis.
    Macrì S; Simula L; Pellarin I; Pegoraro S; Onorati M; Sgarra R; Manfioletti G; Vignali R
    Dev Biol; 2016 Mar; 411(1):25-37. PubMed ID: 26806704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vivo and In Vitro Quantitative Analysis of Neural Crest Cell Migration.
    Barriga EH; Shellard A; Mayor R
    Methods Mol Biol; 2019; 1976():135-152. PubMed ID: 30977071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hox proteins as regulators of extracellular matrix interactions during neural crest migration.
    Howard AGA; Uribe RA
    Differentiation; 2022; 128():26-32. PubMed ID: 36228422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissection, Culture and Analysis of Primary Cranial Neural Crest Cells from Mouse for the Study of Neural Crest Cell Delamination and Migration.
    Gonzalez Malagon SG; Dobson L; Muñoz AML; Dawson M; Barrell W; Marangos P; Krause M; Liu KJ
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epithelium-mesenchyme transition during neural crest development.
    Duband JL; Monier F; Delannet M; Newgreen D
    Acta Anat (Basel); 1995; 154(1):63-78. PubMed ID: 8714290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stabilization of ATF4 protein is required for the regulation of epithelial-mesenchymal transition of the avian neural crest.
    Suzuki T; Osumi N; Wakamatsu Y
    Dev Biol; 2010 Aug; 344(2):658-68. PubMed ID: 20580702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration.
    Fort P; Guémar L; Vignal E; Morin N; Notarnicola C; de Santa Barbara P; Faure S
    Dev Biol; 2011 Feb; 350(2):451-63. PubMed ID: 21156169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural crest delamination and migration: Looking forward to the next 150 years.
    Gouignard N; Andrieu C; Theveneau E
    Genesis; 2018 Jun; 56(6-7):e23107. PubMed ID: 29675839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Post-transcriptional regulation as a conserved driver of neural crest and cancer-cell migration.
    Rajan AAN; Hutchins EJ
    Curr Opin Cell Biol; 2024 Aug; 89():102400. PubMed ID: 39032482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype.
    Sinnberg T; Levesque MP; Krochmann J; Cheng PF; Ikenberg K; Meraz-Torres F; Niessner H; Garbe C; Busch C
    Mol Cancer; 2018 Feb; 17(1):59. PubMed ID: 29454361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.
    Barriga EH; Franze K; Charras G; Mayor R
    Nature; 2018 Feb; 554(7693):523-527. PubMed ID: 29443958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT.
    Rogers CD; Saxena A; Bronner ME
    J Cell Biol; 2013 Dec; 203(5):835-47. PubMed ID: 24297751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling variability and heterogeneity of EMT scenarios highlights nuclear positioning and protrusions as main drivers of extrusion.
    Plunder S; Danesin C; Glise B; Ferreira MA; Merino-Aceituno S; Theveneau E
    Nat Commun; 2024 Aug; 15(1):7365. PubMed ID: 39198505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Beyond transcription: How post-transcriptional mechanisms drive neural crest EMT".
    Guzman-Espinoza M; Kim M; Ow C; Hutchins EJ
    Genesis; 2024 Feb; 62(1):e23553. PubMed ID: 37735882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces.
    Scarpa E; Szabó A; Bibonne A; Theveneau E; Parsons M; Mayor R
    Dev Cell; 2015 Aug; 34(4):421-34. PubMed ID: 26235046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted inactivation of Snail family EMT regulatory factors by a Co(III)-Ebox conjugate.
    Harney AS; Meade TJ; LaBonne C
    PLoS One; 2012; 7(2):e32318. PubMed ID: 22393397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epithelial to mesenchymal transition: new and old insights from the classical neural crest model.
    Strobl-Mazzulla PH; Bronner ME
    Semin Cancer Biol; 2012 Oct; 22(5-6):411-6. PubMed ID: 22575214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PleiotRHOpic: Rho pathways are essential for all stages of Neural Crest development.
    Fort P; Théveneau E
    Small GTPases; 2014; 5():e27975. PubMed ID: 24614304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rho-kinase and myosin II affect dynamic neural crest cell behaviors during epithelial to mesenchymal transition in vivo.
    Berndt JD; Clay MR; Langenberg T; Halloran MC
    Dev Biol; 2008 Dec; 324(2):236-44. PubMed ID: 18926812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.