These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 32939731)

  • 1. Studying the Metabolism of Epithelial-Mesenchymal Plasticity Using the Seahorse XFe96 Extracellular Flux Analyzer.
    Bhatia S; Thompson EW; Gunter JH
    Methods Mol Biol; 2021; 2179():327-340. PubMed ID: 32939731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenergetic analysis of intact mammalian cells using the Seahorse XF24 Extracellular Flux analyzer and a luciferase ATP assay.
    de Moura MB; Van Houten B
    Methods Mol Biol; 2014; 1105():589-602. PubMed ID: 24623254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the role Rab25 in energy metabolism and cancer using extracellular flux analysis and material balance.
    Mitra S; Molina J; Mills GB; Dennison JB
    Methods Mol Biol; 2015; 1298():195-205. PubMed ID: 25800844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular Flux Assays to Determine Oxidative Phosphorylation and Glycolysis in Chronic Lymphocytic Leukemia Cells.
    Vangapandu HV; Gandhi V
    Methods Mol Biol; 2019; 1881():121-128. PubMed ID: 30350202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolytic reprogramming in macrophages and MSCs during inflammation.
    Li X; Shen H; Zhang M; Teissier V; Huang EE; Gao Q; Tsubosaka M; Toya M; Kushioka J; Maduka CV; Contag CH; Chow SK; Zhang N; Goodman SB
    Front Immunol; 2023; 14():1199751. PubMed ID: 37675119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer.
    van der Windt GJW; Chang CH; Pearce EL
    Curr Protoc Immunol; 2016 Apr; 113():3.16B.1-3.16B.14. PubMed ID: 27038461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BIOENERGETIC CHARACTERIZATION OF H9C2 CELLS USING THE EXTRACELLULAR FLUX ANALYZER.
    Scurtu I; Sturza A; Pavel IZ; Popescu R; Privistirescu A; Duicu OM; Muntean DM
    Rev Med Chir Soc Med Nat Iasi; 2015; 119(2):491-5. PubMed ID: 26204657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing Melanoma Cell Oxygen Consumption and Extracellular Acidification Rates Using Seahorse Technology.
    Menk AV; Delgoffe GM
    Methods Mol Biol; 2021; 2265():81-89. PubMed ID: 33704707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining Macrophage Polarization upon Metabolic Perturbation.
    Liu PS; Ho PC
    Methods Mol Biol; 2019; 1862():173-186. PubMed ID: 30315468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of TLR-Induced Metabolic Changes in Dendritic Cells Using the Seahorse XF(e)96 Extracellular Flux Analyzer.
    Pelgrom LR; van der Ham AJ; Everts B
    Methods Mol Biol; 2016; 1390():273-85. PubMed ID: 26803635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells.
    Zhang J; Zhang Q
    Methods Mol Biol; 2019; 1928():353-363. PubMed ID: 30725464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism.
    Plitzko B; Loesgen S
    Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.
    Wei C; Heitmeier M; Hruz PW; Shanmugam M
    Methods Mol Biol; 2018; 1713():69-75. PubMed ID: 29218518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Analysis of Mycobacterium tuberculosis-Induced Bioenergetic Changes in Infected Macrophages Using an Extracellular Flux Analyzer.
    Cumming BM; Reddy VP; Steyn AJC
    Methods Mol Biol; 2020; 2184():161-184. PubMed ID: 32808225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live Metabolic Profile Analysis of Zebrafish Embryos Using a Seahorse XF 24 Extracellular Flux Analyzer.
    Bond ST; McEwen KA; Yoganantharajah P; Gibert Y
    Methods Mol Biol; 2018; 1797():393-401. PubMed ID: 29896705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate.
    Pike Winer LS; Wu M
    PLoS One; 2014; 9(10):e109916. PubMed ID: 25360519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rubella Viruses Shift Cellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with a Strain-Specific Requirement for Glutamine.
    Bilz NC; Jahn K; Lorenz M; Lüdtke A; Hübschen JM; Geyer H; Mankertz A; Hübner D; Liebert UG; Claus C
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-specific RNA analysis shows uncoupled epithelial-mesenchymal plasticity in circulating and disseminated tumour cells from human breast cancer xenografts.
    Tachtsidis A; Le AV; Blick T; Gunasinghe D; De Sousa E; Waltham M; Dobrovic A; Thompson EW
    Clin Exp Metastasis; 2019 Aug; 36(4):393-409. PubMed ID: 31190270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Molecular Mechanisms behind Advanced Breast Cancer Metabolism: Warburg Effect, OXPHOS, and Calcium.
    Mitaishvili E; Feinsod H; David Z; Shpigel J; Fernandez C; Sauane M; de la Parra C
    Front Biosci (Landmark Ed); 2024 Mar; 29(3):99. PubMed ID: 38538285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways.
    Jia D; Lu M; Jung KH; Park JH; Yu L; Onuchic JN; Kaipparettu BA; Levine H
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3909-3918. PubMed ID: 30733294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.