These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32939873)

  • 41. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly.
    Roessler E; Belloni E; Gaudenz K; Jay P; Berta P; Scherer SW; Tsui LC; Muenke M
    Nat Genet; 1996 Nov; 14(3):357-60. PubMed ID: 8896572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sonic hedgehog signal peptide mutation in a patient with holoprosencephaly.
    Kato M; Nanba E; Akaboshi S; Shiihara T; Ito A; Honma T; Tsuburaya K; Hayasaka K
    Ann Neurol; 2000 Apr; 47(4):514-6. PubMed ID: 10762164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel sonic hedgehog gene variant in a patient with hyponatremia, microsomia, and midline defects; phenotype description in association with a variant of unknown significance [c.755_757del p.(Phe252del)] and an approach to salt-wasting in SHH-related adrenal disorders.
    Antoniadi M; Vitoratou DI; Marinou M; Fafoula O; Mylona F; Palaiologou D; Leandros L; Kostaridou S
    J Pediatr Endocrinol Metab; 2023 Jun; 36(6):608-613. PubMed ID: 37184081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extreme variability of expression of a Sonic Hedgehog mutation: attention difficulties and holoprosencephaly.
    Heussler HS; Suri M; Young ID; Muenke M
    Arch Dis Child; 2002 Apr; 86(4):293-6. PubMed ID: 11919111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The mutational spectrum of holoprosencephaly-associated changes within the SHH gene in humans predicts loss-of-function through either key structural alterations of the ligand or its altered synthesis.
    Roessler E; El-Jaick KB; Dubourg C; Vélez JI; Solomon BD; Pineda-Alvarez DE; Lacbawan F; Zhou N; Ouspenskaia M; Paulussen A; Smeets HJ; Hehr U; Bendavid C; Bale S; Odent S; David V; Muenke M
    Hum Mutat; 2009 Oct; 30(10):E921-35. PubMed ID: 19603532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice.
    Hong M; Krauss RS
    PLoS Genet; 2012; 8(10):e1002999. PubMed ID: 23071453
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of disease-relevant modulators of the SHH pathway in the developing brain.
    Mecklenburg N; Kowalczyk I; Witte F; Görne J; Laier A; Mamo TM; Gonschior H; Lehmann M; Richter M; Sporbert A; Purfürst B; Hübner N; Hammes A
    Development; 2021 Sep; 148(17):. PubMed ID: 34463328
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish.
    Yao X; Liu X; Zhang Y; Li Y; Zhao C; Yao S; Wei Y
    Hum Gene Ther; 2017 Jul; 28(7):588-597. PubMed ID: 28478735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterochronic shift in Hox-mediated activation of sonic hedgehog leads to morphological changes during fin development.
    Sakamoto K; Onimaru K; Munakata K; Suda N; Tamura M; Ochi H; Tanaka M
    PLoS One; 2009; 4(4):e5121. PubMed ID: 19365553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse.
    Barratt KS; Drover KA; Thomas ZM; Arkell RM
    WIREs Mech Dis; 2022 Jul; 14(4):e1552. PubMed ID: 35137563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Holoprosencephaly: from Homer to Hedgehog.
    Ming JE; Muenke M
    Clin Genet; 1998 Mar; 53(3):155-63. PubMed ID: 9630065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders.
    Tessadori F; Roessler HI; Savelberg SMC; Chocron S; Kamel SM; Duran KJ; van Haelst MM; van Haaften G; Bakkers J
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gli2 gene-environment interactions contribute to the etiological complexity of holoprosencephaly: evidence from a mouse model.
    Heyne GW; Everson JL; Ansen-Wilson LJ; Melberg CG; Fink DM; Parins KF; Doroodchi P; Ulschmid CM; Lipinski RJ
    Dis Model Mech; 2016 Nov; 9(11):1307-1315. PubMed ID: 27585885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exon trapping analysis of c.301-19G > A in intron 1 of the SHH gene in a patient with a microform of holoprosencephaly.
    Kulseth MA; Lyle R; Rødningen OK; Sorte H; Prescott T
    Eur J Med Genet; 2011; 54(2):130-5. PubMed ID: 21044704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling.
    Liu J; Zhou Y; Qi X; Chen J; Chen W; Qiu G; Wu Z; Wu N
    Hum Genet; 2017 Jan; 136(1):1-12. PubMed ID: 27807677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
    Zhang Y; Qin W; Lu X; Xu J; Huang H; Bai H; Li S; Lin S
    Nat Commun; 2017 Jul; 8(1):118. PubMed ID: 28740134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid functional analysis of computationally complex rare human IRF6 gene variants using a novel zebrafish model.
    Li EB; Truong D; Hallett SA; Mukherjee K; Schutte BC; Liao EC
    PLoS Genet; 2017 Sep; 13(9):e1007009. PubMed ID: 28945736
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Zic-associated holoprosencephaly: zebrafish Zic1 controls midline formation and forebrain patterning by regulating Nodal, Hedgehog, and retinoic acid signaling.
    Maurus D; Harris WA
    Genes Dev; 2009 Jun; 23(12):1461-73. PubMed ID: 19528322
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Missense substitutions in the GAS1 protein present in holoprosencephaly patients reduce the affinity for its ligand, SHH.
    Pineda-Alvarez DE; Roessler E; Hu P; Srivastava K; Solomon BD; Siple CE; Fan CM; Muenke M
    Hum Genet; 2012 Feb; 131(2):301-10. PubMed ID: 21842183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Truncating loss-of-function mutations of DISP1 contribute to holoprosencephaly-like microform features in humans.
    Roessler E; Ma Y; Ouspenskaia MV; Lacbawan F; Bendavid C; Dubourg C; Beachy PA; Muenke M
    Hum Genet; 2009 May; 125(4):393-400. PubMed ID: 19184110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.