These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32939950)

  • 41. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolism of sulfate-reducing prokaryotes.
    Hansen TA
    Antonie Van Leeuwenhoek; 1994; 66(1-3):165-85. PubMed ID: 7747930
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell.
    Eaktasang N; Kang CS; Lim H; Kwean OS; Cho S; Kim Y; Kim HS
    Bioresour Technol; 2016 Jun; 210():61-7. PubMed ID: 26818576
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions.
    Li Q; Wang J; Xing X; Hu W
    Bioelectrochemistry; 2018 Aug; 122():40-50. PubMed ID: 29547738
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell.
    Cooney MJ; Roschi E; Marison IW; Comninellis C; von Stockar U
    Enzyme Microb Technol; 1996 Apr; 18(5):358-65. PubMed ID: 8882004
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Development of mono- and associative cultures of sulphate-reducing bacteria and formation of exopolymeric complex].
    Purish LM; Asaulenko LH; Ostapchuk AM
    Mikrobiol Z; 2009; 71(2):20-6. PubMed ID: 19938590
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel.
    Li S; Li L; Qu Q; Kang Y; Zhu B; Yu D; Huang R
    Colloids Surf B Biointerfaces; 2019 Jan; 173():139-147. PubMed ID: 30278362
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electron uptake by iron-oxidizing phototrophic bacteria.
    Bose A; Gardel EJ; Vidoudez C; Parra EA; Girguis PR
    Nat Commun; 2014 Feb; 5():3391. PubMed ID: 24569675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Patterns of sulfur isotope fractionation during microbial sulfate reduction.
    Bradley AS; Leavitt WD; Schmidt M; Knoll AH; Girguis PR; Johnston DT
    Geobiology; 2016 Jan; 14(1):91-101. PubMed ID: 26189479
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate.
    Li X; McInerney MJ; Stahl DA; Krumholz LR
    Microbiology (Reading); 2011 Oct; 157(Pt 10):2912-2921. PubMed ID: 21798981
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduction of molybdate by sulfate-reducing bacteria.
    Biswas KC; Woodards NA; Xu H; Barton LL
    Biometals; 2009 Feb; 22(1):131-9. PubMed ID: 19130259
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms.
    Dunsmore BC; Jacobsen A; Hall-Stoodley L; Bass CJ; Lappin-Scott HM; Stoodley P
    J Ind Microbiol Biotechnol; 2002 Dec; 29(6):347-53. PubMed ID: 12483477
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source.
    Badziong W; Thauer RK; Zeikus JG
    Arch Microbiol; 1978 Jan; 116(1):41-9. PubMed ID: 623496
    [No Abstract]   [Full Text] [Related]  

  • 56. Influence of the concentration of phosphorus, potassium, calcium and iron compounds on the microbial reduction of sulphates.
    Domka F; Gasiorek J
    Acta Microbiol Pol A; 1976; 8(1):57-64. PubMed ID: 937089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.
    Chung K; Fujiki I; Okabe S
    Bioresour Technol; 2011 Jan; 102(1):355-60. PubMed ID: 20923722
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Growth and cometabolic reduction kinetics of a uranium- and sulfate-reducing Desulfovibrio/Clostridia mixed culture: Temperature effects.
    Boonchayaanant B; Kitanidis PK; Criddle CS
    Biotechnol Bioeng; 2008 Apr; 99(5):1107-19. PubMed ID: 17929318
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nonaheme cytochrome c, a new physiological electron acceptor for [Ni,Fe] hydrogenase in the sulfate-reducing bacterium Desulfovibrio desulfuricans Essex: primary sequence, molecular parameters, and redox properties.
    Fritz G; Griesshaber D; Seth O; Kroneck PM
    Biochemistry; 2001 Feb; 40(5):1317-24. PubMed ID: 11170458
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation.
    Arakaki A; Takeyama H; Tanaka T; Matsunaga T
    Appl Biochem Biotechnol; 2002; 98-100():833-40. PubMed ID: 12018305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.