These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32940015)

  • 1. Enhanced filtration performance using feed-and-bleed configuration for purification of antibody precipitates.
    Li Z; Chen TH; Andini E; Coffman JL; Przybycien T; Zydney AL
    Biotechnol Prog; 2021 Jan; 37(1):e3082. PubMed ID: 32940015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous precipitation for monoclonal antibody capture using countercurrent washing by microfiltration.
    Li Z; Gu Q; Coffman JL; Przybycien T; Zydney AL
    Biotechnol Prog; 2019 Nov; 35(6):e2886. PubMed ID: 31342667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of zinc chloride and PEG concentrations on the critical flux during tangential flow microfiltration of BSA precipitates.
    Li Z; Zydney AL
    Biotechnol Prog; 2017 Nov; 33(6):1561-1567. PubMed ID: 28840656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous integrated antibody precipitation with two-stage tangential flow microfiltration enables constant mass flow.
    Burgstaller D; Jungbauer A; Satzer P
    Biotechnol Bioeng; 2019 May; 116(5):1053-1065. PubMed ID: 30636284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput solubility and redissolution screening for antibody purification via combined PEG and zinc chloride precipitation.
    Gu Q; Li Z; Coffman JL; Przybycien TM; Zydney AL
    Biotechnol Prog; 2020 Nov; 36(6):e3041. PubMed ID: 32583625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening techniques for rapid PEG-based precipitation of IgG4 mAb from clarified cell culture supernatant.
    Knevelman C; Davies J; Allen L; Titchener-Hooker NJ
    Biotechnol Prog; 2010; 26(3):697-705. PubMed ID: 20014099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an ELP-Z based mAb affinity precipitation process using scaled-down filtration techniques.
    Sheth RD; Bhut BV; Jin M; Li Z; Chen W; Cramer SM
    J Biotechnol; 2014 Dec; 192 Pt A():11-9. PubMed ID: 25285370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High productivity purification of immunoglobulin G monoclonal antibodies on starch-coated magnetic nanoparticles by steric exclusion of polyethylene glycol.
    Gagnon P; Toh P; Lee J
    J Chromatogr A; 2014 Jan; 1324():171-80. PubMed ID: 24315125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized recovery of monoclonal antibodies from transgenic goat milk by microfiltration.
    Baruah GL; Belfort G
    Biotechnol Bioeng; 2004 Aug; 87(3):274-85. PubMed ID: 15281102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of antibodies by precipitating impurities using Polyethylene Glycol to enable a two chromatography step process.
    Giese G; Myrold A; Gorrell J; Persson J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Nov; 938():14-21. PubMed ID: 24036248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultra scale-down method to investigate monoclonal antibody processing during tangential flow filtration using ultrafiltration membranes.
    Fernandez-Cerezo L; Rayat ACME; Chatel A; Pollard JM; Lye GJ; Hoare M
    Biotechnol Bioeng; 2019 Mar; 116(3):581-590. PubMed ID: 30411315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.
    McNerney T; Thomas A; Senczuk A; Petty K; Zhao X; Piper R; Carvalho J; Hammond M; Sawant S; Bussiere J
    MAbs; 2015; 7(2):413-28. PubMed ID: 25706650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process Analytical Technology (PAT) Implementation for Membrane Operations in Continuous Manufacturing of mAbs: Model-Based Control of Single-Pass Tangential Flow Ultrafiltration.
    Thakur G; Masampally V; Kulkarni A; Rathore AS
    AAPS J; 2022 Jul; 24(4):83. PubMed ID: 35831532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ultra- and microfiltration in the presence and absence of secondary flow with polysaccharides, proteins, and yeast suspensions.
    Gehlert G; Luque S; Belfort G
    Biotechnol Prog; 1998; 14(6):931-42. PubMed ID: 9841658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification of monoclonal antibodies derived from transgenic goat milk by ultrafiltration.
    Baruah GL; Nayak A; Winkelman E; Belfort G
    Biotechnol Bioeng; 2006 Mar; 93(4):747-54. PubMed ID: 16255037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: testing model with transgenic goat milk.
    Baruah GL; Couto D; Belfort G
    Biotechnol Prog; 2003; 19(5):1533-40. PubMed ID: 14524716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation of bovine serum albumin and monoclonal antibody alemtuzumab using carrier phase ultrafiltration.
    Wan Y; Ghosh R; Hale G; Cui Z
    Biotechnol Bioeng; 2005 May; 90(3):303-15. PubMed ID: 15803473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of immunoglobulin G precipitate from contaminating proteins using microfiltration.
    Neal G; Francis R; Shamlou PA; Keshavarz-Moore E
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):241-8. PubMed ID: 15032745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective precipitation-assisted recovery of immunoglobulins from bovine serum using controlled-fouling crossflow membrane microfiltration.
    Venkiteshwaran A; Heider P; Teysseyre L; Belfort G
    Biotechnol Bioeng; 2008 Dec; 101(5):957-66. PubMed ID: 18553503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafiltration behavior of partially retained proteins and completely retained proteins using equally-staged single pass tangential flow filtration membranes.
    Arunkumar A; Zhang J; Singh N; Ghose S; Li ZJ
    Biotechnol Prog; 2018 Sep; 34(5):1137-1148. PubMed ID: 30019541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.