These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 32940060)

  • 1. A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait.
    Hainisch R; Kranzl A; Lin YC; Pandy MG; Gfoehler M
    Comput Methods Biomech Biomed Engin; 2021 Mar; 24(4):349-357. PubMed ID: 32940060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation of mono- and bi-articular muscles: human lower limb.
    Zagrodny B; Ludwicki M; Wojnicz W; Mrozowski J; Awrejcewicz J
    J Musculoskelet Neuronal Interact; 2018 Jun; 18(2):176-182. PubMed ID: 29855439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiment-guided tuning of muscle-tendon parameters to estimate muscle fiber lengths and passive forces.
    Luis I; Afschrift M; Gutierrez-Farewik EM
    Sci Rep; 2024 Jun; 14(1):14652. PubMed ID: 38918538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing three generic musculoskeletal models to estimate the tibiofemoral reaction forces during gait and sit-to-stand tasks.
    Pelegrinelli ARM; Catelli DS; Kowalski E; Lamontagne M; Moura FA
    Med Eng Phys; 2023 Dec; 122():104074. PubMed ID: 38092489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking Joint Impairment and Gait Biomechanics in Patients with Juvenile Idiopathic Arthritis.
    Montefiori E; Modenese L; Di Marco R; Magni-Manzoni S; Malattia C; Petrarca M; Ronchetti A; de Horatio LT; van Dijkhuizen P; Wang A; Wesarg S; Viceconti M; MazzĂ  C;
    Ann Biomed Eng; 2019 Nov; 47(11):2155-2167. PubMed ID: 31111329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional musculoskeletal model of the pelvis and lower limb of Australopithecus afarensis.
    O'Neill MC; Nagano A; Umberger BR
    Am J Biol Anthropol; 2024 Mar; 183(3):e24845. PubMed ID: 37671481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher coactivations of lower limb muscles increase stability during walking on slippery ground in forward dynamics musculoskeletal simulation.
    Koo YJ; Hwangbo J; Koo S
    Sci Rep; 2023 Dec; 13(1):22808. PubMed ID: 38129534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AST: An OpenSim-based tool for the automatic scaling of generic musculoskeletal models.
    Di Pietro A; Bersani A; Curreli C; Di Puccio F
    Comput Biol Med; 2024 Jun; 175():108524. PubMed ID: 38688126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models.
    Valero-Cuevas FJ; Cohn BA; Yngvason HF; Lawrence EL
    J Biomech; 2015 Aug; 48(11):2887-96. PubMed ID: 25980557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis of the estimated muscle forces during gait with respect to the musculoskeletal model parameters and dynamic simulation techniques.
    Zuk M; Syczewska M; Pezowicz C
    J Biomech Eng; 2018 Jul; ():. PubMed ID: 30098142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictions of thumb, hand, and arm muscle parameters derived using force measurements of varying complexity and neural networks.
    Lindbeck EM; Diaz MT; Nichols JA; Harley JB
    J Biomech; 2023 Dec; 161():111834. PubMed ID: 37865980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An articulated shape model to predict paediatric lower limb bone geometry using sparse landmarks.
    Carman L; Besier TF; Rooks NB; Choisne J
    J Biomech; 2024 Jun; 172():112211. PubMed ID: 38955093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Shriners Children's Gait Model (SCGM).
    Kruger KM; Fischer P; Augsburger S; Feng J; Girouard JF; Gregory DL; Johnson L; MacWilliams BA; McMulkin ML; Nelson B; Warshauer S; Saraswat P; Chafetz RS
    Gait Posture; 2024 May; 110():84-109. PubMed ID: 38552301
    [No Abstract]   [Full Text] [Related]  

  • 15. Sensitivity Analysis of Upper Limb Musculoskeletal Models During Isometric and Isokinetic Tasks.
    Diaz MT; Harley JB; Nichols JA
    J Biomech Eng; 2024 Feb; 146(2):. PubMed ID: 37978046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering individual-specific gait signatures from data-driven models of neuromechanical dynamics.
    Winner TS; Rosenberg MC; Jain K; Kesar TM; Ting LH; Berman GJ
    PLoS Comput Biol; 2023 Oct; 19(10):e1011556. PubMed ID: 37889927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of ground reaction forces and moments during walking in children with cerebral palsy.
    Kloeckner J; Visscher RMS; Taylor WR; Viehweger E; De Pieri E
    Front Hum Neurosci; 2023; 17():1127613. PubMed ID: 36968787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of Ground Reaction Force and Muscle Activation Prediction in a Child-Adapted Musculoskeletal Model.
    Daunoraviciene K; Ziziene J
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of kinematic parameters of children gait obtained by inverse and direct models.
    Ziziene J; Daunoraviciene K; Juskeniene G; Raistenskis J
    PLoS One; 2022; 17(6):e0270423. PubMed ID: 35749351
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.