BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32940820)

  • 1. Silencing of PhLA, a CIN-TCP gene, causes defected petal conical epidermal cell formation and results in reflexed corolla lobes in petunia.
    Chen HW; Lee PL; Wang CN; Hsu HJ; Chen JC
    Bot Stud; 2020 Sep; 61(1):24. PubMed ID: 32940820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dorsoventrally asymmetric expression of miR319/TCP generates dorsal-specific venation patterning in petunia corolla tube.
    Zhang B; Qin X; Han Y; Li M; Guo Y
    J Exp Bot; 2024 Jun; 75(11):3401-3411. PubMed ID: 38492236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of region-specific gene expression for development of the partially fused petunia corolla.
    Preston JC; Powers B; Kostyun JL; Driscoll H; Zhang F; Zhong J
    Plant J; 2019 Oct; 100(1):158-175. PubMed ID: 31183889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of cell and petal morphogenesis by R2R3 MYB transcription factors.
    Baumann K; Perez-Rodriguez M; Bradley D; Venail J; Bailey P; Jin H; Koes R; Roberts K; Martin C
    Development; 2007 May; 134(9):1691-701. PubMed ID: 17376813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Identification, Characterization and Expression Analysis of TCP Transcription Factors in
    Zhang S; Zhou Q; Chen F; Wu L; Liu B; Li F; Zhang J; Bao M; Liu G
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32916908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silencing ATG6 and PI3K accelerates petal senescence and reduces flower number and shoot biomass in petunia.
    Lin Y; Jones ML
    Plant Sci; 2021 Jan; 302():110713. PubMed ID: 33288020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum.
    Crawford BC; Nath U; Carpenter R; Coen ES
    Plant Physiol; 2004 May; 135(1):244-53. PubMed ID: 15122032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrida.
    Trupkin SA; Astigueta FH; Baigorria AH; García MN; Delfosse VC; González SA; Pérez de la Torre MC; Moschen S; Lía VV; Fernández P; Heinz RA
    Plant Sci; 2019 Oct; 287():110195. PubMed ID: 31481223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell layer-specific expression of the homeotic MADS-box transcription factor PhDEF contributes to modular petal morphogenesis in petunia.
    Chopy M; Cavallini-Speisser Q; Chambrier P; Morel P; Just J; Hugouvieux V; Rodrigues Bento S; Zubieta C; Vandenbussche M; Monniaux M
    Plant Cell; 2024 Jan; 36(2):324-345. PubMed ID: 37804091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CIN-TCP transcription factors: Transiting cell proliferation in plants.
    Sarvepalli K; Nath U
    IUBMB Life; 2018 Aug; 70(8):718-731. PubMed ID: 29934986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning.
    Shleizer-Burko S; Burko Y; Ben-Herzel O; Ori N
    Development; 2011 Feb; 138(4):695-704. PubMed ID: 21228002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organ boundary NAC-domain transcription factors are implicated in the evolution of petal fusion.
    Zhong J; Powell S; Preston JC
    Plant Biol (Stuttg); 2016 Nov; 18(6):893-902. PubMed ID: 27500862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Regulation of CIN-like TCP Transcription Factors.
    Lan J; Qin G
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32599902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume.
    Zhou Y; Xu Z; Zhao K; Yang W; Cheng T; Wang J; Zhang Q
    Front Plant Sci; 2016; 7():1301. PubMed ID: 27630648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence.
    Chen JC; Jiang CZ; Gookin TE; Hunter DA; Clark DG; Reid MS
    Plant Mol Biol; 2004 Jul; 55(4):521-30. PubMed ID: 15604697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PhDAHP1 is required for floral volatile benzenoid/phenylpropanoid biosynthesis in Petunia × hybrida cv 'Mitchell Diploid'.
    Langer KM; Jones CR; Jaworski EA; Rushing GV; Kim JY; Clark DG; Colquhoun TA
    Phytochemistry; 2014 Jul; 103():22-31. PubMed ID: 24815009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T
    Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Aintegumenta as a gene to modify floral size in ornamental plants.
    Manchado-Rojo M; Weiss J; Egea-Cortines M
    Plant Biotechnol J; 2014 Oct; 12(8):1053-65. PubMed ID: 24985495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel petal up-regulated
    Tran Q; Osabe K; Entani T; Nagai T
    Plant Biotechnol (Tokyo); 2021 Jun; 38(2):197-204. PubMed ID: 34393598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.
    Yang W; Cai Y; Hu L; Wei Q; Chen G; Bai M; Wu H; Liu J; Yu Y
    Sci Rep; 2017 Feb; 7():41471. PubMed ID: 28150693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.