These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 32940999)
21. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials. Zaverkin V; Kästner J J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968 [TBL] [Abstract][Full Text] [Related]
22. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178 [TBL] [Abstract][Full Text] [Related]
23. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368 [TBL] [Abstract][Full Text] [Related]
24. Fast Near Lu F; Cheng L; DiRisio RJ; Finney JM; Boyer MA; Moonkaen P; Sun J; Lee SJR; Deustua JE; Miller TF; McCoy AB J Phys Chem A; 2022 Jun; 126(25):4013-4024. PubMed ID: 35715227 [TBL] [Abstract][Full Text] [Related]
25. Neural network atomistic potentials for global energy minima search in carbon clusters. Tkachenko NV; Tkachenko AA; Nebgen B; Tretiak S; Boldyrev AI Phys Chem Chem Phys; 2023 Aug; 25(32):21173-21182. PubMed ID: 37490276 [TBL] [Abstract][Full Text] [Related]
26. Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator. Choi YJ; Jhi SH J Phys Chem B; 2020 Oct; 124(39):8704-8710. PubMed ID: 32910653 [TBL] [Abstract][Full Text] [Related]
27. Global Neural Network Potential with Explicit Many-Body Functions for Improved Descriptions of Complex Potential Energy Surface. Kang PL; Yang ZX; Shang C; Liu ZP J Chem Theory Comput; 2023 Nov; 19(21):7972-7981. PubMed ID: 37856312 [TBL] [Abstract][Full Text] [Related]
28. Accurate fundamental invariant-neural network representation of Fu B; Zhang DH Natl Sci Rev; 2023 Dec; 10(12):nwad321. PubMed ID: 38274241 [TBL] [Abstract][Full Text] [Related]
29. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials. Herbold M; Behler J J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596 [TBL] [Abstract][Full Text] [Related]
30. Advances in Docking. Sulimov VB; Kutov DC; Sulimov AV Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836 [TBL] [Abstract][Full Text] [Related]
31. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related]
32. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525 [TBL] [Abstract][Full Text] [Related]
33. Compressing physics with an autoencoder: Creating an atomic species representation to improve machine learning models in the chemical sciences. Herr JE; Koh K; Yao K; Parkhill J J Chem Phys; 2019 Aug; 151(8):084103. PubMed ID: 31470722 [TBL] [Abstract][Full Text] [Related]
34. Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials. Lin Q; Zhang L; Zhang Y; Jiang B J Chem Theory Comput; 2021 May; 17(5):2691-2701. PubMed ID: 33904718 [TBL] [Abstract][Full Text] [Related]
35. Benchmark study on deep neural network potentials for small organic molecules. Modee R; Laghuvarapu S; Priyakumar UD J Comput Chem; 2022 Feb; 43(5):308-318. PubMed ID: 34870332 [TBL] [Abstract][Full Text] [Related]
36. Improve the performance of machine-learning potentials by optimizing descriptors. Gao H; Wang J; Sun J J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049 [TBL] [Abstract][Full Text] [Related]
37. Automating the Development of High-Dimensional Reactive Potential Energy Surfaces with the robosurfer Program System. Győri T; Czakó G J Chem Theory Comput; 2020 Jan; 16(1):51-66. PubMed ID: 31851508 [TBL] [Abstract][Full Text] [Related]
38. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. Cournia Z; Allen B; Sherman W J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483 [TBL] [Abstract][Full Text] [Related]
39. Neural Network Potentials: A Concise Overview of Methods. Kocer E; Ko TW; Behler J Annu Rev Phys Chem; 2022 Apr; 73():163-186. PubMed ID: 34982580 [TBL] [Abstract][Full Text] [Related]
40. Automatically growing global reactive neural network potential energy surfaces: A trajectory-free active learning strategy. Lin Q; Zhang Y; Zhao B; Jiang B J Chem Phys; 2020 Apr; 152(15):154104. PubMed ID: 32321263 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]