These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32941430)

  • 1. Lignin induced iron reduction by novel sp., Tolumonas lignolytic BRL6-1.
    Chaput G; Billings AF; DeDiego L; Orellana R; Adkins JN; Nicora CD; Kim YM; Chu R; Simmons B; DeAngelis KM
    PLoS One; 2020; 15(9):e0233823. PubMed ID: 32941430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov.
    Billings AF; Fortney JL; Hazen TC; Simmons B; Davenport KW; Goodwin L; Ivanova N; Kyrpides NC; Mavromatis K; Woyke T; DeAngelis KM
    Stand Genomic Sci; 2015; 10():106. PubMed ID: 26594307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2.
    Woo HL; Ballor NR; Hazen TC; Fortney JL; Simmons B; Davenport KW; Goodwin L; Ivanova N; Kyrpides NC; Mavromatis K; Woyke T; Jansson J; Kimbrel J; DeAngelis KM
    Stand Genomic Sci; 2014; 9():19. PubMed ID: 25566348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes.
    Wang W; Zhang C; Sun X; Su S; Li Q; Linhardt RJ
    World J Microbiol Biotechnol; 2017 Jun; 33(6):125. PubMed ID: 28540631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of Serpula lacrymans iron-reductase enzymes in lignocellulose breakdown.
    Nurika I; Eastwood DC; Bugg TDH; Barker GC
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):145-154. PubMed ID: 31734813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions.
    Arantes V; Milagres AM; Filley TR; Goodell B
    J Ind Microbiol Biotechnol; 2011 Apr; 38(4):541-55. PubMed ID: 20711629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium.
    Orellana R; Chaput G; Markillie LM; Mitchell H; Gaffrey M; Orr G; DeAngelis KM
    PLoS One; 2017; 12(10):e0186440. PubMed ID: 29049419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes.
    Shin SK; Ko YJ; Hyeon JE; Han SO
    Bioresour Technol; 2019 Oct; 289():121728. PubMed ID: 31277889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Termite Fungal Cultivar
    Schalk F; Gostinčar C; Kreuzenbeck NB; Conlon BH; Sommerwerk E; Rabe P; Burkhardt I; Krüger T; Kniemeyer O; Brakhage AA; Gunde-Cimerman N; de Beer ZW; Dickschat JS; Poulsen M; Beemelmanns C
    mBio; 2021 Jun; 12(3):e0355120. PubMed ID: 34126770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium.
    Brown ME; Barros T; Chang MC
    ACS Chem Biol; 2012 Dec; 7(12):2074-81. PubMed ID: 23054399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the Fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions.
    Merino C; Matus F; Kuzyakov Y; Dyckmans J; Stock S; Dippold MA
    Sci Total Environ; 2021 Mar; 760():143397. PubMed ID: 33199010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxamate iron complex with phenoloxidase activity acting on lignin and chlorolignins.
    Parra C; Santiago MF; Rodriguez J; Durán N
    Biochem Biophys Res Commun; 1998 Aug; 249(3):719-22. PubMed ID: 9731204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic and molecular mechanisms for efficient biodegradation of aromatic dye.
    Sun S; Xie S; Chen H; Cheng Y; Shi Y; Qin X; Dai SY; Zhang X; Yuan JS
    J Hazard Mater; 2016 Jan; 302():286-295. PubMed ID: 26476316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH.
    Kato S; Ohkuma M
    Microbiol Spectr; 2021 Sep; 9(1):e0016121. PubMed ID: 34431720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-reducing bacteria decompose lignin by electron transfer from soil organic matter.
    Merino C; Kuzyakov Y; Godoy K; Jofré I; Nájera F; Matus F
    Sci Total Environ; 2021 Mar; 761():143194. PubMed ID: 33183799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of a catecholate chelator as a redox agent in Fenton-based reactions on degradation of lignin-model substrates and on COD removal from effluent of an ECF kraft pulp mill.
    Arantes V; Milagres AM
    J Hazard Mater; 2007 Mar; 141(1):273-9. PubMed ID: 16905243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
    Li HY; Li SN; Wang SX; Wang Q; Xue YY; Zhu BC
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1404-10. PubMed ID: 26571658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of organic solvent and cholinium based ionic liquid activated novel lignolytic enzymes of H. aswanensis for enhanced Kalson lignin degradation.
    Chauhan AK; Choudhury B
    Int J Biol Macromol; 2020 Dec; 165(Pt A):107-117. PubMed ID: 32980414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lignin and ligninase].
    Levit MN; Shkrob AM
    Bioorg Khim; 1992 Mar; 18(3):309-45. PubMed ID: 1524589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.