These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32941651)

  • 1. eIF4G-driven translation initiation of downstream ORFs in mammalian cells.
    Nobuta R; Machida K; Sato M; Hashimoto S; Toriumi Y; Nakajima S; Suto D; Imataka H; Inada T
    Nucleic Acids Res; 2020 Oct; 48(18):10441-10455. PubMed ID: 32941651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E.
    Gross JD; Moerke NJ; von der Haar T; Lugovskoy AA; Sachs AB; McCarthy JE; Wagner G
    Cell; 2003 Dec; 115(6):739-50. PubMed ID: 14675538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Cyclization of Eukaryotic mRNAs.
    Alekhina OM; Terenin IM; Dmitriev SE; Vassilenko KS
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32121426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G.
    Ali IK; McKendrick L; Morley SJ; Jackson RJ
    J Virol; 2001 Sep; 75(17):7854-63. PubMed ID: 11483729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translation of eukaryotic translation initiation factor 4GI (eIF4GI) proceeds from multiple mRNAs containing a novel cap-dependent internal ribosome entry site (IRES) that is active during poliovirus infection.
    Byrd MP; Zamora M; Lloyd RE
    J Biol Chem; 2005 May; 280(19):18610-22. PubMed ID: 15755734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-tethering assay and eIF4G:eIF4A obligate dimer design uncovers multiple eIF4F functional complexes.
    Robert F; Cencic R; Cai R; Schmeing TM; Pelletier J
    Nucleic Acids Res; 2020 Sep; 48(15):8562-8575. PubMed ID: 32749456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The translation of capped mRNAs has an absolute requirement for the central domain of eIF4G but not for the cap-binding initiation factor eIF4E.
    Ali IK; Jackson RJ
    Cold Spring Harb Symp Quant Biol; 2001; 66():377-87. PubMed ID: 12762040
    [No Abstract]   [Full Text] [Related]  

  • 8. Translational control of mRNAs by 3'-Untranslated region binding proteins.
    Yamashita A; Takeuchi O
    BMB Rep; 2017 Apr; 50(4):194-200. PubMed ID: 28287067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Triticum Mosaic Virus Internal Ribosome Entry Site Relies on a Picornavirus-Like YX-AUG Motif To Designate the Preferred Translation Initiation Site and To Likely Target the 18S rRNA.
    Jaramillo-Mesa H; Gannon M; Holshbach E; Zhang J; Roberts R; Buettner M; Rakotondrafara AM
    J Virol; 2019 Mar; 93(5):. PubMed ID: 30541835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E.
    Ohlmann T; Rau M; Pain VM; Morley SJ
    EMBO J; 1996 Mar; 15(6):1371-82. PubMed ID: 8635470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proteolytic cleavage of eukaryotic initiation factor (eIF) 4G is prevented by eIF4E binding protein (PHAS-I; 4E-BP1) in the reticulocyte lysate.
    Ohlmann T; Pain VM; Wood W; Rau M; Morley SJ
    EMBO J; 1997 Feb; 16(4):844-55. PubMed ID: 9049313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story.
    Han B; Zhang JT
    Mol Cell Biol; 2002 Nov; 22(21):7372-84. PubMed ID: 12370285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes.
    Miyakawa S; Oguro A; Ohtsu T; Imataka H; Sonenberg N; Nakamura Y
    RNA; 2006 Oct; 12(10):1825-34. PubMed ID: 16940549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. eIF4G is retained on ribosomes elongating and terminating on short upstream ORFs to control reinitiation in yeast.
    Mohammad MP; Smirnova A; Gunišová S; Valášek LS
    Nucleic Acids Res; 2021 Sep; 49(15):8743-8756. PubMed ID: 34352092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eukaryotic initiation factor 4G-poly(A) binding protein interaction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entry segment-driven translation but not for X-mediated stimulation of hepatitis C virus translation.
    Michel YM; Borman AM; Paulous S; Kean KM
    Mol Cell Biol; 2001 Jul; 21(13):4097-109. PubMed ID: 11390639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the role of eIF4G in stimulating cap- and IRES-dependent translation in aplysia neurons.
    Dyer J; Sossin WS
    PLoS One; 2013; 8(9):e74085. PubMed ID: 24019950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in cap- and IRES-dependent protein synthesis by overproduction of translation initiation factor eIF4G.
    Hayashi S; Nishimura K; Fukuchi-Shimogori T; Kashiwagi K; Igarashi K
    Biochem Biophys Res Commun; 2000 Oct; 277(1):117-23. PubMed ID: 11027650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame?
    Pöyry TA; Kaminski A; Jackson RJ
    Genes Dev; 2004 Jan; 18(1):62-75. PubMed ID: 14701882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular cap-binding protein, eIF4E, promotes picornavirus genome restructuring and translation.
    Avanzino BC; Fuchs G; Fraser CS
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9611-9616. PubMed ID: 28827335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Interaction of Eukaryotic Initiation Factor 4G1 (eIF4G1) with eIF4E and eIF1 Underlies Scanning-Dependent and -Independent Translation.
    Haimov O; Sehrawat U; Tamarkin-Ben Harush A; Bahat A; Uzonyi A; Will A; Hiraishi H; Asano K; Dikstein R
    Mol Cell Biol; 2018 Sep; 38(18):. PubMed ID: 29987188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.