These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 32941954)
1. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Lam KO; Wong IYH; Law SYK; Chiu KWH; Vardhanabhuti V; Fu J Radiother Oncol; 2021 Jan; 154():6-13. PubMed ID: 32941954 [TBL] [Abstract][Full Text] [Related]
2. CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients. Fan L; Yang Z; Chang M; Chen Z; Wen Q J Transl Med; 2024 Jun; 22(1):579. PubMed ID: 38890720 [TBL] [Abstract][Full Text] [Related]
3. A machine learning approach using Qi WX; Li S; Xiao J; Li H; Chen J; Zhao S Front Immunol; 2024; 15():1351750. PubMed ID: 38352868 [TBL] [Abstract][Full Text] [Related]
4. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer. Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507 [TBL] [Abstract][Full Text] [Related]
5. Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures. Cui Y; Li Z; Xiang M; Han D; Yin Y; Ma C Radiat Oncol; 2022 Dec; 17(1):212. PubMed ID: 36575480 [TBL] [Abstract][Full Text] [Related]
6. A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma. Wang JL; Tang LS; Zhong X; Wang Y; Feng YJ; Zhang Y; Liu JY Front Immunol; 2024; 15():1405146. PubMed ID: 38947338 [TBL] [Abstract][Full Text] [Related]
7. A prediction model for pathological findings after neoadjuvant chemoradiotherapy for resectable locally advanced esophageal squamous cell carcinoma based on endoscopic images using deep learning. Kawahara D; Murakami Y; Tani S; Nagata Y Br J Radiol; 2022 Jul; 95(1135):20210934. PubMed ID: 35451338 [TBL] [Abstract][Full Text] [Related]
8. Assessment of Intratumoral and Peritumoral Computed Tomography Radiomics for Predicting Pathological Complete Response to Neoadjuvant Chemoradiation in Patients With Esophageal Squamous Cell Carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Chiu KWH; Fu J; Vardhanabhuti V JAMA Netw Open; 2020 Sep; 3(9):e2015927. PubMed ID: 32910196 [TBL] [Abstract][Full Text] [Related]
9. Using clinical and radiomic feature-based machine learning models to predict pathological complete response in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiation. Wang J; Zhu X; Zeng J; Liu C; Shen W; Sun X; Lin Q; Fang J; Chen Q; Ji Y Eur Radiol; 2023 Dec; 33(12):8554-8563. PubMed ID: 37439939 [TBL] [Abstract][Full Text] [Related]
10. CT-based radiomic signatures for prediction of pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. Yang Z; He B; Zhuang X; Gao X; Wang D; Li M; Lin Z; Luo R J Radiat Res; 2019 Jul; 60(4):538-545. PubMed ID: 31111948 [TBL] [Abstract][Full Text] [Related]
11. A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer. Kawahara D; Nishioka R; Murakami Y; Emoto Y; Iwashita K; Sasaki R Eur J Surg Oncol; 2024 Jul; 50(7):108450. PubMed ID: 38843660 [TBL] [Abstract][Full Text] [Related]
12. Radiomics and dosiomics for predicting complete response to definitive chemoradiotherapy patients with oesophageal squamous cell cancer using the hybrid institution model. Kawahara D; Murakami Y; Awane S; Emoto Y; Iwashita K; Kubota H; Sasaki R; Nagata Y Eur Radiol; 2024 Feb; 34(2):1200-1209. PubMed ID: 37589902 [TBL] [Abstract][Full Text] [Related]
13. Computed tomography-based deep-learning prediction of induction chemotherapy treatment response in locally advanced nasopharyngeal carcinoma. Yang Y; Wang M; Qiu K; Wang Y; Ma X Strahlenther Onkol; 2022 Feb; 198(2):183-193. PubMed ID: 34817635 [TBL] [Abstract][Full Text] [Related]
14. Predicting the Local Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemoradiotherapy by Radiomics with a Machine Learning Method Using Murakami Y; Kawahara D; Tani S; Kubo K; Katsuta T; Imano N; Takeuchi Y; Nishibuchi I; Saito A; Nagata Y Diagnostics (Basel); 2021 Jun; 11(6):. PubMed ID: 34200332 [TBL] [Abstract][Full Text] [Related]
15. MR radiomics predicts pathological complete response of esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy: a multicenter study. Liu Y; Wang Y; Wang X; Xue L; Zhang H; Ma Z; Deng H; Yang Z; Sun X; Men Y; Ye F; Men K; Qin J; Bi N; Wang Q; Hui Z Cancer Imaging; 2024 Jan; 24(1):16. PubMed ID: 38263134 [TBL] [Abstract][Full Text] [Related]
16. Predicting response to CCRT for esophageal squamous carcinoma by a radiomics-clinical SHAP model. Cheng X; Zhang Y; Zhu M; Sun R; Liu L; Li X BMC Med Imaging; 2023 Oct; 23(1):145. PubMed ID: 37779188 [TBL] [Abstract][Full Text] [Related]
17. Development of a nomogram for the prediction of pathological complete response after neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma. Chao YK; Chang HK; Tseng CK; Liu YH; Wen YW Dis Esophagus; 2017 Feb; 30(2):1-8. PubMed ID: 27868287 [TBL] [Abstract][Full Text] [Related]
18. CT radiomics features of meso-esophageal fat in predicting overall survival of patients with locally advanced esophageal squamous cell carcinoma treated by definitive chemoradiotherapy. Yan S; Li FP; Jian L; Zhu HT; Zhao B; Li XT; Shi YJ; Sun YS BMC Cancer; 2023 May; 23(1):477. PubMed ID: 37231388 [TBL] [Abstract][Full Text] [Related]
19. The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma. Lu S; Wang C; Liu Y; Chu F; Jia Z; Zhang H; Wang Z; Lu Y; Wang S; Yang G; Qu J Eur Radiol; 2024 Jan; 34(1):485-494. PubMed ID: 37540319 [TBL] [Abstract][Full Text] [Related]
20. Development and Validation of a Radiomics Nomogram Model for Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved pCR After Neoadjuvant Chemoradiotherapy Followed by Surgery. Qiu Q; Duan J; Deng H; Han Z; Gu J; Yue NJ; Yin Y Front Oncol; 2020; 10():1398. PubMed ID: 32850451 [No Abstract] [Full Text] [Related] [Next] [New Search]