BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32942089)

  • 21. Measurement of Viscoelastic Material Model Parameters Using Fractional Derivative Group Shear Wave Speeds in Simulation and Phantom Data.
    Trutna CA; Rouze NC; Palmeri ML; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):286-295. PubMed ID: 31562083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography.
    Glozman T; Azhari H
    J Ultrasound Med; 2010 Mar; 29(3):387-98. PubMed ID: 20194935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MR elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction.
    Hirsch S; Guo J; Reiter R; Papazoglou S; Kroencke T; Braun J; Sack I
    Magn Reson Med; 2014 Jan; 71(1):267-77. PubMed ID: 23413115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
    Nabavizadeh A; Song P; Chen S; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):647-62. PubMed ID: 25881343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity.
    Deffieux T; Montaldo G; Tanter M; Fink M
    IEEE Trans Med Imaging; 2009 Mar; 28(3):313-22. PubMed ID: 19244004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shear wave speed and dispersion measurements using crawling wave chirps.
    Hah Z; Partin A; Parker KJ
    Ultrason Imaging; 2014 Oct; 36(4):277-90. PubMed ID: 24658144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach.
    Huang CC; Chen PY; Shih CC
    Med Phys; 2013 Apr; 40(4):042901. PubMed ID: 23556923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials.
    Doyley MM; Perreard I; Patterson AJ; Weaver JB; Paulsen KM
    Med Phys; 2010 Aug; 37(8):3970-9. PubMed ID: 20879559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstructing 3-D maps of the local viscoelastic properties using a finite-amplitude modulated radiation force.
    Giannoula A; Cobbold R; Bezerianos A
    Ultrasonics; 2014 Feb; 54(2):563-75. PubMed ID: 24011778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.
    Budelli E; Brum J; Bernal M; Deffieux T; Tanter M; Lema P; Negreira C; Gennisson JL
    Phys Med Biol; 2017 Jan; 62(1):91-106. PubMed ID: 27973354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative breast elastography from B-mode images.
    Rabin C; Benech N
    Med Phys; 2019 Jul; 46(7):3001-3012. PubMed ID: 30972759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical characterization of ex vivo human brain using ultrasound shear wave spectroscopy.
    Nicolas E; Callé S; Nicolle S; Mitton D; Remenieras JP
    Ultrasonics; 2018 Mar; 84():119-125. PubMed ID: 29112910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium.
    Chatelin S; Gennisson JL; Bernal M; Tanter M; Pernot M
    Phys Med Biol; 2015 May; 60(9):3639-54. PubMed ID: 25880794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Image reconstruction utilizing median filtering applied to elastography.
    Carbente RP; Maia JM; Assef AA
    Biomed Eng Online; 2019 Mar; 18(1):22. PubMed ID: 30866955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accounting for the Spatial Observation Window in the 2-D Fourier Transform Analysis of Shear Wave Attenuation.
    Rouze NC; Deng Y; Palmeri ML; Nightingale KR
    Ultrasound Med Biol; 2017 Oct; 43(10):2500-2506. PubMed ID: 28733030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a hyper-viscoelastic phantom mimicking biological soft tissue using an abdominal pneumatic driver with magnetic resonance elastography (MRE).
    Leclerc GE; Debernard L; Foucart F; Robert L; Pelletier KM; Charleux F; Ehman R; Ho Ba Tho MC; Bensamoun SF
    J Biomech; 2012 Apr; 45(6):952-7. PubMed ID: 22284992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wideband MR elastography for viscoelasticity model identification.
    Yasar TK; Royston TJ; Magin RL
    Magn Reson Med; 2013 Aug; 70(2):479-89. PubMed ID: 23001852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of viscoelastic properties of tissue-mimicking material using longitudinal wave excitation.
    Baghani A; Eskandari H; Salcudean S; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1405-18. PubMed ID: 19574151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.