These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 32942128)
21. Immune checkpoint blockade in melanoma: Advantages, shortcomings and emerging roles of the nanoparticles. Mahdavi Gorabi A; Sadat Ravari M; Sanaei MJ; Davaran S; Kesharwani P; Sahebkar A Int Immunopharmacol; 2022 Dec; 113(Pt A):109300. PubMed ID: 36252486 [TBL] [Abstract][Full Text] [Related]
22. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. Mullins SR; Vasilakos JP; Deschler K; Grigsby I; Gillis P; John J; Elder MJ; Swales J; Timosenko E; Cooper Z; Dovedi SJ; Leishman AJ; Luheshi N; Elvecrog J; Tilahun A; Goodwin R; Herbst R; Tomai MA; Wilkinson RW J Immunother Cancer; 2019 Sep; 7(1):244. PubMed ID: 31511088 [TBL] [Abstract][Full Text] [Related]
23. Bioresponsive Protein Complex of aPD1 and aCD47 Antibodies for Enhanced Immunotherapy. Chen Q; Chen G; Chen J; Shen J; Zhang X; Wang J; Chan A; Gu Z Nano Lett; 2019 Aug; 19(8):4879-4889. PubMed ID: 31294571 [TBL] [Abstract][Full Text] [Related]
24. Carboxyamidotriazole combined with IDO1-Kyn-AhR pathway inhibitors profoundly enhances cancer immunotherapy. Shi J; Chen C; Ju R; Wang Q; Li J; Guo L; Ye C; Zhang D J Immunother Cancer; 2019 Sep; 7(1):246. PubMed ID: 31511064 [TBL] [Abstract][Full Text] [Related]
25. Injectable Anti-inflammatory Nanofiber Hydrogel to Achieve Systemic Immunotherapy Post Local Administration. Chen M; Tan Y; Dong Z; Lu J; Han X; Jin Q; Zhu W; Shen J; Cheng L; Liu Z; Chen Q Nano Lett; 2020 Sep; 20(9):6763-6773. PubMed ID: 32787149 [TBL] [Abstract][Full Text] [Related]
26. The Obesity Paradox in Cancer, Tumor Immunology, and Immunotherapy: Potential Therapeutic Implications in Triple Negative Breast Cancer. Naik A; Monjazeb AM; Decock J Front Immunol; 2019; 10():1940. PubMed ID: 31475003 [TBL] [Abstract][Full Text] [Related]
27. Blockade of myeloid-derived suppressor cell function by valproic acid enhanced anti-PD-L1 tumor immunotherapy. Adeshakin AO; Yan D; Zhang M; Wang L; Adeshakin FO; Liu W; Wan X Biochem Biophys Res Commun; 2020 Feb; 522(3):604-611. PubMed ID: 31785814 [TBL] [Abstract][Full Text] [Related]
28. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology. Liu Z; Xiang Y; Zheng Y; Kang X Front Immunol; 2022; 13():1027124. PubMed ID: 36341334 [TBL] [Abstract][Full Text] [Related]
29. Boosting Checkpoint Immunotherapy with Biomaterials. Liu L; Pan Y; Zhao C; Huang P; Chen X; Rao L ACS Nano; 2023 Feb; 17(4):3225-3258. PubMed ID: 36746639 [TBL] [Abstract][Full Text] [Related]
30. Current status of PD-1/PD-L1 blockade immunotherapy in breast cancer. Noguchi E; Shien T; Iwata H Jpn J Clin Oncol; 2021 Mar; 51(3):321-332. PubMed ID: 33324990 [TBL] [Abstract][Full Text] [Related]
31. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy. Zhang C; Liu Y Front Immunol; 2020; 11():1295. PubMed ID: 32714324 [TBL] [Abstract][Full Text] [Related]
32. Immune Checkpoint Blockade in Breast Cancer Therapy. Bu X; Yao Y; Li X Adv Exp Med Biol; 2017; 1026():383-402. PubMed ID: 29282694 [TBL] [Abstract][Full Text] [Related]
33. LCOR mediates interferon-independent tumor immunogenicity and responsiveness to immune-checkpoint blockade in triple-negative breast cancer. Pérez-Núñez I; Rozalén C; Palomeque JÁ; Sangrador I; Dalmau M; Comerma L; Hernández-Prat A; Casadevall D; Menendez S; Liu DD; Shen M; Berenguer J; Ruiz IR; Peña R; Montañés JC; Albà MM; Bonnin S; Ponomarenko J; Gomis RR; Cejalvo JM; Servitja S; Marzese DM; Morey L; Voorwerk L; Arribas J; Bermejo B; Kok M; Pusztai L; Kang Y; Albanell J; Celià-Terrassa T Nat Cancer; 2022 Mar; 3(3):355-370. PubMed ID: 35301507 [TBL] [Abstract][Full Text] [Related]
34. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Jia H; Truica CI; Wang B; Wang Y; Ren X; Harvey HA; Song J; Yang JM Drug Resist Updat; 2017 May; 32():1-15. PubMed ID: 29145974 [TBL] [Abstract][Full Text] [Related]
35. Anti-PD-1/PD-L1 Blockade Immunotherapy Employed in Treating Hepatitis B Virus Infection-Related Advanced Hepatocellular Carcinoma: A Literature Review. Li B; Yan C; Zhu J; Chen X; Fu Q; Zhang H; Tong Z; Liu L; Zheng Y; Zhao P; Jiang W; Fang W Front Immunol; 2020; 11():1037. PubMed ID: 32547550 [TBL] [Abstract][Full Text] [Related]
36. Proof of concept nanotechnological approach to in vitro targeting of malignant melanoma for enhanced immune checkpoint inhibition. Alharbi B; Qanash H; Binsaleh NK; Alharthi S; Elasbali AM; Gharekhan CH; Mahmoud M; Lioudakis E; O'Leary JJ; Doherty DG; Mohamed BM; Gray SG Sci Rep; 2023 May; 13(1):7462. PubMed ID: 37156818 [TBL] [Abstract][Full Text] [Related]
37. Preclinical rationale and clinical efficacy of antiangiogenic therapy and immune checkpoint blockade combination therapy in urogenital tumors. Zhu N; Weng S; Wang J; Chen J; Yu L; Fang X; Yuan Y J Cancer Res Clin Oncol; 2019 Dec; 145(12):3021-3036. PubMed ID: 31617075 [TBL] [Abstract][Full Text] [Related]
38. Fluorocarbon Modified Chitosan to Enable Transdermal Immunotherapy for Melanoma Treatment. Zhuang Q; Chao T; Wu Y; Wei T; Ren J; Cao Z; Peng R; Liu Z Small; 2023 Nov; 19(46):e2303634. PubMed ID: 37467294 [TBL] [Abstract][Full Text] [Related]
39. Neoadjuvant immune checkpoint blockade: A window of opportunity to advance cancer immunotherapy. Topalian SL; Forde PM; Emens LA; Yarchoan M; Smith KN; Pardoll DM Cancer Cell; 2023 Sep; 41(9):1551-1566. PubMed ID: 37595586 [TBL] [Abstract][Full Text] [Related]
40. Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Gu Y; Zhang Z; Ten Dijke P Cell Mol Immunol; 2023 Apr; 20(4):318-340. PubMed ID: 36823234 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]