These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32942128)

  • 41. Immunotherapy for the treatment of breast cancer: checkpoint blockade, cancer vaccines, and future directions in combination immunotherapy.
    McArthur HL; Page DB
    Clin Adv Hematol Oncol; 2016 Nov; 14(11):922-933. PubMed ID: 27930644
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Progress and Challenges in Precise Treatment of Tumors With PD-1/PD-L1 Blockade.
    Jiang Y; Zhao X; Fu J; Wang H
    Front Immunol; 2020; 11():339. PubMed ID: 32226426
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insignificant effects of loss of heterozygosity in HLA in the efficacy of immune checkpoint blockade treatment.
    Yang Y; Kim E; Kim S
    Genes Genomics; 2022 Apr; 44(4):509-515. PubMed ID: 35107815
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combined Radiation Therapy and Immune Checkpoint Blockade Therapy for Breast Cancer.
    Hu ZI; Ho AY; McArthur HL
    Int J Radiat Oncol Biol Phys; 2017 Sep; 99(1):153-164. PubMed ID: 28816141
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies.
    Philips GK; Atkins M
    Int Immunol; 2015 Jan; 27(1):39-46. PubMed ID: 25323844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Injectable cold atmospheric plasma-activated immunotherapeutic hydrogel for enhanced cancer treatment.
    Fang T; Cao X; Shen B; Chen Z; Chen G
    Biomaterials; 2023 Sep; 300():122189. PubMed ID: 37307777
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Age-Related Differences in Molecular Profiles for Immune Checkpoint Blockade Therapy.
    Zhang QJ; Luan JC; Song LB; Cong R; Ji CJ; Zhou X; Xia JD; Song NH
    Front Immunol; 2021; 12():657575. PubMed ID: 33936087
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Dual-Bioresponsive Drug-Delivery Depot for Combination of Epigenetic Modulation and Immune Checkpoint Blockade.
    Ruan H; Hu Q; Wen D; Chen Q; Chen G; Lu Y; Wang J; Cheng H; Lu W; Gu Z
    Adv Mater; 2019 Apr; 31(17):e1806957. PubMed ID: 30856290
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beyond melanoma: inhibiting the PD-1/PD-L1 pathway in solid tumors.
    Gentzler R; Hall R; Kunk PR; Gaughan E; Dillon P; Slingluff CL; Rahma OE
    Immunotherapy; 2016 May; 8(5):583-600. PubMed ID: 27140411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TNFR2 blockade alone or in combination with PD-1 blockade shows therapeutic efficacy in murine cancer models.
    Case K; Tran L; Yang M; Zheng H; Kuhtreiber WM; Faustman DL
    J Leukoc Biol; 2020 Jun; 107(6):981-991. PubMed ID: 32449229
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing KDM5A and TLR activity improves the response to immune checkpoint blockade.
    Wang L; Gao Y; Zhang G; Li D; Wang Z; Zhang J; Hermida LC; He L; Wang Z; Si J; Geng S; Ai R; Ning F; Cheng C; Deng H; Dimitrov DS; Sun Y; Huang Y; Wang D; Hu X; Wei Z; Wang W; Liao X
    Sci Transl Med; 2020 Sep; 12(560):. PubMed ID: 32908002
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitizing the Tumor Microenvironment to Immune Checkpoint Therapy.
    Zemek RM; Chin WL; Nowak AK; Millward MJ; Lake RA; Lesterhuis WJ
    Front Immunol; 2020; 11():223. PubMed ID: 32133005
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blocking exposed PD-L1 elicited by nanosecond pulsed electric field reverses dysfunction of CD8
    Qian J; Chen T; Wu Q; Zhou L; Zhou W; Wu L; Wang S; Lu J; Wang W; Li D; Xie H; Su R; Guo D; Liu Z; He N; Yin S; Zheng S
    Cancer Lett; 2020 Dec; 495():1-11. PubMed ID: 32949680
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Can Combined Therapy Benefit Immune Checkpoint Blockade Response in Hepatocellular Carcinoma?
    Zhongqi F; Xiaodong S; Yuguo C; Guoyue L
    Anticancer Agents Med Chem; 2019; 19(2):222-228. PubMed ID: 30426903
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches.
    Song D; Powles T; Shi L; Zhang L; Ingersoll MA; Lu YJ
    J Pathol; 2019 Oct; 249(2):151-165. PubMed ID: 31102277
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cancer immunotherapy with check point inhibitor can cause autoimmune adverse events due to loss of Treg homeostasis.
    Kumar P; Saini S; Prabhakar BS
    Semin Cancer Biol; 2020 Aug; 64():29-35. PubMed ID: 30716481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ICBcomb: a comprehensive expression database for immune checkpoint blockade combination therapy.
    Xia Y; Gao Y; Liu MY; Li L; Pan W; Mao LZ; Yang Z; Yang M; Guo AY
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38095856
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects.
    Li T; Liu T; Zhu W; Xie S; Zhao Z; Feng B; Guo H; Yang R
    Clin Med Insights Oncol; 2021; 15():11795549211035540. PubMed ID: 34408525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.