These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32942128)

  • 61. Photothermal therapies to improve immune checkpoint blockade for cancer.
    Balakrishnan PB; Sweeney EE; Ramanujam AS; Fernandes R
    Int J Hyperthermia; 2020 Dec; 37(3):34-49. PubMed ID: 33426992
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Radiation and Immunotherapy in Upper Gastrointestinal Cancers: The Current State of Play.
    Donlon NE; Power R; Hayes C; Davern M; Reynolds JV; Lysaght J
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33499003
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Oncolytic vaccines increase the response to PD-L1 blockade in immunogenic and poorly immunogenic tumors.
    Feola S; Capasso C; Fusciello M; Martins B; Tähtinen S; Medeot M; Carpi S; Frascaro F; Ylosmäki E; Peltonen K; Pastore L; Cerullo V
    Oncoimmunology; 2018; 7(8):e1457596. PubMed ID: 30221051
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Development of a Patient-Derived 3D Immuno-Oncology Platform to Potentiate Immunotherapy Responses in Ascites-Derived Circulating Tumor Cells.
    Gerton TJ; Green A; Campisi M; Chen M; Gjeci I; Mahadevan N; Lee CAA; Mishra R; Vo HV; Haratani K; Li ZH; Hasselblatt KT; Testino B; Connor T; Lian CG; Elias KM; Lizotte P; Ivanova EV; Barbie DA; Dinulescu DM
    Cancers (Basel); 2023 Aug; 15(16):. PubMed ID: 37627156
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Personalized modulation of tumor microimmune microenvironment for the development of effective combination immunotherapy].
    Kawakami Y
    Rinsho Ketsueki; 2018; 59(7):939-944. PubMed ID: 30078806
    [TBL] [Abstract][Full Text] [Related]  

  • 66. PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy.
    Zhang X; Wang C; Wang J; Hu Q; Langworthy B; Ye Y; Sun W; Lin J; Wang T; Fine J; Cheng H; Dotti G; Huang P; Gu Z
    Adv Mater; 2018 May; 30(22):e1707112. PubMed ID: 29656492
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Training the microbiota to increase immune checkpoint blockade and to reduce toxicity.
    Rescigno M
    Eur J Immunol; 2023 Nov; 53(11):e2250183. PubMed ID: 36747375
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A tumor microenvironment responsive biodegradable CaCO
    Liu Y; Pan Y; Cao W; Xia F; Liu B; Niu J; Alfranca G; Sun X; Ma L; de la Fuente JM; Song J; Ni J; Cui D
    Theranostics; 2019; 9(23):6867-6884. PubMed ID: 31660074
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Targeting immune checkpoints in hematological malignancies.
    Salik B; Smyth MJ; Nakamura K
    J Hematol Oncol; 2020 Aug; 13(1):111. PubMed ID: 32787882
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Era of Checkpoint Inhibition: Lessons Learned from Melanoma.
    Paschen A; Schadendorf D
    Recent Results Cancer Res; 2020; 214():169-187. PubMed ID: 31473853
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients.
    Ott PA; Hodi FS; Robert C
    Clin Cancer Res; 2013 Oct; 19(19):5300-9. PubMed ID: 24089443
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stromal PD-L1-Positive Regulatory T cells and PD-1-Positive CD8-Positive T cells Define the Response of Different Subsets of Non-Small Cell Lung Cancer to PD-1/PD-L1 Blockade Immunotherapy.
    Wu SP; Liao RQ; Tu HY; Wang WJ; Dong ZY; Huang SM; Guo WB; Gou LY; Sun HW; Zhang Q; Xie Z; Yan LX; Su J; Yang JJ; Zhong WZ; Zhang XC; Wu YL
    J Thorac Oncol; 2018 Apr; 13(4):521-532. PubMed ID: 29269008
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Immune subtyping for pancreatic cancer with implication in clinical outcomes and improving immunotherapy.
    Liu J; Liu Q; Zhang X; Cui M; Li T; Zhang Y; Liao Q
    Cancer Cell Int; 2021 Feb; 21(1):137. PubMed ID: 33637086
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance.
    Huang AC; Zappasodi R
    Nat Immunol; 2022 May; 23(5):660-670. PubMed ID: 35241833
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Radiofrequency ablation of liver metastasis: potential impact on immune checkpoint inhibitor therapy.
    Minami Y; Nishida N; Kudo M
    Eur Radiol; 2019 Sep; 29(9):5045-5051. PubMed ID: 30963271
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Immune targets in the tumor microenvironment treated by radiotherapy.
    Ozpiskin OM; Zhang L; Li JJ
    Theranostics; 2019; 9(5):1215-1231. PubMed ID: 30867826
    [TBL] [Abstract][Full Text] [Related]  

  • 78. PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer.
    Dosset M; Vargas TR; Lagrange A; Boidot R; Végran F; Roussey A; Chalmin F; Dondaine L; Paul C; Lauret Marie-Joseph E; Martin F; Ryffel B; Borg C; Adotévi O; Ghiringhelli F; Apetoh L
    Oncoimmunology; 2018; 7(6):e1433981. PubMed ID: 29872568
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Melanoma immunotherapy: strategies to overcome pharmacological resistance.
    Trojaniello C; Vitale MG; Scarpato L; Esposito A; Ascierto PA
    Expert Rev Anticancer Ther; 2020 Apr; 20(4):289-304. PubMed ID: 32195606
    [No Abstract]   [Full Text] [Related]  

  • 80. Current studies of immunotherapy in head and neck cancer.
    Dogan V; Rieckmann T; Münscher A; Busch CJ
    Clin Otolaryngol; 2018 Feb; 43(1):13-21. PubMed ID: 28464441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.