BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32942149)

  • 1. Therapeutic potential of ALKB homologs for cardiovascular disease.
    Xiao MZ; Liu JM; Xian CL; Chen KY; Liu ZQ; Cheng YY
    Biomed Pharmacother; 2020 Nov; 131():110645. PubMed ID: 32942149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ALKBHs-facilitated RNA modifications and de-modifications.
    A Alemu E; He C; Klungland A
    DNA Repair (Amst); 2016 Aug; 44():87-91. PubMed ID: 27237585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-homologous functions of the AlkB homologs.
    Ougland R; Rognes T; Klungland A; Larsen E
    J Mol Cell Biol; 2015 Dec; 7(6):494-504. PubMed ID: 26003568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of demethylase AlkB homologs in cancer.
    Li Q; Zhu Q
    Front Oncol; 2023; 13():1153463. PubMed ID: 37007161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Inhibitors of AlkB Family of Nucleic Acid Demethylases.
    Xie LJ; Liu L; Cheng L
    Biochemistry; 2020 Jan; 59(3):230-239. PubMed ID: 31603665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The AlkB Family of Fe (II)/Alpha-Ketoglutarate-Dependent Dioxygenases Modulates Embryogenesis through Epigenetic Regulation.
    Liu Y; Yuan Q; Xie L
    Curr Stem Cell Res Ther; 2018; 13(2):136-143. PubMed ID: 29076432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA Demethylation in the Processes of Repair and Epigenetic Regulation Performed by 2-Ketoglutarate-Dependent DNA Dioxygenases.
    Kuznetsov NA; Kanazhevskaya LY; Fedorova OS
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila Alpha-ketoglutarate-dependent dioxygenase AlkB is involved in repair from neuronal disorders induced by ultraviolet damage.
    Wakisaka KT; Muraoka Y; Shimizu J; Yamaguchi M; Ueoka I; Mizuta I; Yoshida H; Yamaguchi M
    Neuroreport; 2019 Oct; 30(15):1039-1047. PubMed ID: 31503204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family.
    Xu B; Liu D; Wang Z; Tian R; Zuo Y
    Cell Mol Life Sci; 2021 Jan; 78(1):129-141. PubMed ID: 32642789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient kinetic analysis of oxidative dealkylation by the direct reversal DNA repair enzyme AlkB.
    Baldwin MR; Admiraal SJ; O'Brien PJ
    J Biol Chem; 2020 May; 295(21):7317-7326. PubMed ID: 32284330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural determinants of nucleobase modification recognition in the AlkB family of dioxygenases.
    Van Deuren V; Plessers S; Robben J
    DNA Repair (Amst); 2020 Dec; 96():102995. PubMed ID: 33069898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RecA stimulates AlkB-mediated direct repair of DNA adducts.
    Shivange G; Monisha M; Nigam R; Kodipelli N; Anindya R
    Nucleic Acids Res; 2016 Oct; 44(18):8754-8763. PubMed ID: 27378775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and molecular profiles of the AlkB family in ovarian serous carcinoma.
    Cai Y; Wu G; Peng B; Li J; Zeng S; Yan Y; Xu Z
    Aging (Albany NY); 2021 Mar; 13(7):9679-9692. PubMed ID: 33744868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel AlkB dioxygenases--alternative models for in silico and in vivo studies.
    Mielecki D; Zugaj DŁ; Muszewska A; Piwowarski J; Chojnacka A; Mielecki M; Nieminuszczy J; Grynberg M; Grzesiuk E
    PLoS One; 2012; 7(1):e30588. PubMed ID: 22291995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1,N
    Dylewska M; Kuśmierek JT; Pilżys T; Poznański J; Maciejewska AM
    Biochem J; 2017 May; 474(11):1837-1852. PubMed ID: 28408432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ALKBH1-8 and FTO: Potential Therapeutic Targets and Prognostic Biomarkers in Lung Adenocarcinoma Pathogenesis.
    Wu G; Yan Y; Cai Y; Peng B; Li J; Huang J; Xu Z; Zhou J
    Front Cell Dev Biol; 2021; 9():633927. PubMed ID: 34150745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational flexibility influences structure-function relationships in nucleic acid N-methyl demethylases.
    Waheed SO; Ramanan R; Chaturvedi SS; Ainsley J; Evison M; Ames JM; Schofield CJ; Christov CZ; Karabencheva-Christova TG
    Org Biomol Chem; 2019 Feb; 17(8):2223-2231. PubMed ID: 30720838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families.
    Peng Z; Ma J; Christov CZ; Karabencheva-Christova T; Lehnert N; Li D
    DNA (Basel); 2023 Jun; 3(2):65-84. PubMed ID: 38698914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA.
    Aas PA; Otterlei M; Falnes PO; Vågbø CB; Skorpen F; Akbari M; Sundheim O; Bjørås M; Slupphaug G; Seeberg E; Krokan HE
    Nature; 2003 Feb; 421(6925):859-63. PubMed ID: 12594517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal methylated substrate and extended substrate range of Escherichia coli AlkB protein, a 1-methyladenine-DNA dioxygenase.
    Koivisto P; Duncan T; Lindahl T; Sedgwick B
    J Biol Chem; 2003 Nov; 278(45):44348-54. PubMed ID: 12944387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.