These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32942262)

  • 21. Flexible, non-contact and multifunctional humidity sensors based on two-dimensional phytic acid doped co-metal organic frameworks nanosheets.
    Huo Y; Bu M; Ma Z; Sun J; Yan Y; Xiu K; Wang Z; Hu N; Li YF
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):2010-2018. PubMed ID: 34798709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wearable Sensors for Breath Monitoring Based on Water-Based Hexagonal Boron Nitride Inks Made with Supramolecular Functionalization.
    Chen L; Hu K; Lu M; Chen Z; Chen X; Zhou T; Liu X; Yin W; Casiraghi C; Song X
    Adv Mater; 2024 May; 36(18):e2312621. PubMed ID: 38168037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir-Blodgett deposition of electrochemically exfoliated graphene.
    Vićentić T; Andrić S; Rajić V; Spasenović M
    Beilstein J Nanotechnol; 2022; 13():666-674. PubMed ID: 35957672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A high-performance moisture sensor based on ultralarge graphene oxide.
    Wee BH; Khoh WH; Sarker AK; Lee CH; Hong JD
    Nanoscale; 2015 Nov; 7(42):17805-11. PubMed ID: 26455597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wearable humidity sensor based on porous graphene network for respiration monitoring.
    Pang Y; Jian J; Tu T; Yang Z; Ling J; Li Y; Wang X; Qiao Y; Tian H; Yang Y; Ren TL
    Biosens Bioelectron; 2018 Sep; 116():123-129. PubMed ID: 29879538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite.
    Tachibana S; Wang YF; Sekine T; Takeda Y; Hong J; Yoshida A; Abe M; Miura R; Watanabe Y; Kumaki D; Tokito S
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5721-5728. PubMed ID: 35067045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced Graphene Oxide/Polyelectrolyte Multilayers for Fast Resistive Humidity Sensing.
    Noh W; Go Y; An H
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid-response, reversible and flexible humidity sensing platform using a hydrophobic and porous substrate.
    Wu J; Wu Z; Tao K; Liu C; Yang BR; Xie X; Lu X
    J Mater Chem B; 2019 Mar; 7(12):2063-2073. PubMed ID: 32254810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.
    Chi H; Liu YJ; Wang F; He C
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19882-6. PubMed ID: 26305842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical Microfibers for Sensing Proximity and Contact in Human-Machine Interfaces.
    Liu H; Song X; Wang X; Wang S; Yao N; Li X; Fang W; Tong L; Zhang L
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14447-14454. PubMed ID: 35290012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon Atom Hybridization Matters: Ultrafast Humidity Response of Graphdiyne Oxides.
    Yan H; Guo S; Wu F; Yu P; Liu H; Li Y; Mao L
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3922-3926. PubMed ID: 29457690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile, Flexible, Cost-Saving, and Environment-Friendly Paper-Based Humidity Sensor for Multifunctional Applications.
    Duan Z; Jiang Y; Yan M; Wang S; Yuan Z; Zhao Q; Sun P; Xie G; Du X; Tai H
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21840-21849. PubMed ID: 31135126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Sensitive and Stable Humidity Sensor Based on the Bi-Layered PVA/Graphene Flower Composite Film.
    Rahman SA; Khan SA; Rehman MM; Kim WY
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible Humidity Sensor with High Sensitivity and Durability for Respiratory Monitoring Using Near-Field Electrohydrodynamic Direct-Writing Method.
    Pan T; Yu Z; Huang F; Yao H; Hu G; Tang C; Gu J
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28248-28257. PubMed ID: 37262400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Doping on GO: Fast Response-Recovery Humidity Sensor.
    Rathi K; Pal K
    ACS Omega; 2017 Mar; 2(3):842-851. PubMed ID: 31457476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible and Transparent Cellulose-Based Ionic Film as a Humidity Sensor.
    Wang Y; Zhang L; Zhou J; Lu A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7631-7638. PubMed ID: 31961643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending.
    Kim YH; Kim SJ; Kim YJ; Shim YS; Kim SY; Hong BH; Jang HW
    ACS Nano; 2015 Oct; 9(10):10453-60. PubMed ID: 26321290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous High Sensitivity Sensing of Temperature and Humidity with Graphene Woven Fabrics.
    Zhao X; Long Y; Yang T; Li J; Zhu H
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30171-30176. PubMed ID: 28825460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fractal Design for Advancing the Performance of Chemoresistive Sensors.
    Hassan K; Tung TT; Yap PL; Rastin H; Stanley N; Nine MJ; Losic D
    ACS Sens; 2021 Oct; 6(10):3685-3695. PubMed ID: 34644058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Powered, Highly Sensitive, and Flexible Humidity Sensor Based on Carboxymethyl Cellulose for Multifunctional Applications.
    Dou Y; Tang C; Lu Y
    Langmuir; 2023 Dec; 39(48):17436-17445. PubMed ID: 37976429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.