These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32942353)

  • 1. Brownian motion of ellipsoidal particles on a granular magnetic bath.
    Tapia-Ignacio C; Moctezuma RE; Donado F; Weeks ER
    Phys Rev E; 2020 Aug; 102(2-1):022902. PubMed ID: 32942353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian motion of an asymmetrical particle in a potential field.
    Grima R; Yaliraki SN
    J Chem Phys; 2007 Aug; 127(8):084511. PubMed ID: 17764273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of a self-propelled particle with rotational inertia.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental system for one-dimensional rotational brownian motion.
    McNaughton BH; Kinnunen P; Shlomi M; Cionca C; Pei SN; Clarke R; Argyrakis P; Kopelman R
    J Phys Chem B; 2011 May; 115(18):5212-8. PubMed ID: 21500841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and diffusion of paramagnetic ellipsoidal particles in a rotating magnetic field.
    Liao JJ; Zhu WJ; Ai BQ
    Phys Rev E; 2018 Jun; 97(6-1):062151. PubMed ID: 30011563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid-prototyping a Brownian particle in an active bath.
    Park JT; Paneru G; Kwon C; Granick S; Pak HK
    Soft Matter; 2020 Sep; 16(35):8122-8127. PubMed ID: 32696794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: translational Brownian motion for particles of arbitrary shape.
    Cichocki B; Ekiel-Jeżewska ML; Wajnryb E
    J Chem Phys; 2012 Feb; 136(7):071102. PubMed ID: 22360229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian motion of boomerang colloidal particles.
    Chakrabarty A; Konya A; Wang F; Selinger JV; Sun K; Wei QH
    Phys Rev Lett; 2013 Oct; 111(16):160603. PubMed ID: 24182246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments.
    Sprenger AR; Fernandez-Rodriguez MA; Alvarez L; Isa L; Wittkowski R; Löwen H
    Langmuir; 2020 Jun; 36(25):7066-7073. PubMed ID: 31975603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles.
    Zou QZ; Li ZW; Zhu YL; Sun ZY
    Soft Matter; 2019 Apr; 15(16):3343-3352. PubMed ID: 30951070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a vibration-driven single disk.
    Guan L; Tian L; Hou M; Han Y
    Sci Rep; 2021 Aug; 11(1):16561. PubMed ID: 34400671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational and rotational dynamics of colloidal particles in suspension: effect of shear.
    Hernández-Contreras M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of translation-rotation coupling on the displacement probability distribution functions of boomerang colloidal particles.
    Chakrabarty A; Wang F; Sun K; Wei QH
    Soft Matter; 2016 May; 12(19):4318-23. PubMed ID: 27079870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotational and translational phonon modes in glasses composed of ellipsoidal particles.
    Yunker PJ; Chen K; Zhang Z; Ellenbroek WG; Liu AJ; Yodh AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011403. PubMed ID: 21405694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions.
    Klett K; Cherstvy AG; Shin J; Sokolov IM; Metzler R
    Phys Rev E; 2021 Dec; 104(6-1):064603. PubMed ID: 35030844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion of tagged particle in an exclusion process.
    Barkai E; Silbey R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041129. PubMed ID: 20481699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.
    Chakrabarty A; Wang F; Fan CZ; Sun K; Wei QH
    Langmuir; 2013 Nov; 29(47):14396-402. PubMed ID: 24171648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.