These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32942358)

  • 1. Pair approximation for the q-voter model with independence on multiplex networks.
    Gradowski T; Krawiecki A
    Phys Rev E; 2020 Aug; 102(2-1):022314. PubMed ID: 32942358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Q-neighbor Ising model on multiplex networks with partial overlap of nodes.
    Krawiecki A; Gradowski T
    Phys Rev E; 2023 Jul; 108(1-1):014307. PubMed ID: 37583236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Q-voter model with independence on signed random graphs: Homogeneous approximations.
    Krawiecki A; Gradowski T
    Phys Rev E; 2024 Jan; 109(1-1):014302. PubMed ID: 38366489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discontinuous phase transitions in the q-voter model with generalized anticonformity on random graphs.
    Abramiuk-Szurlej A; Lipiecki A; Pawłowski J; Sznajd-Weron K
    Sci Rep; 2021 Sep; 11(1):17719. PubMed ID: 34489517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetrical threshold model with independence on random graphs.
    Nowak B; Sznajd-Weron K
    Phys Rev E; 2020 May; 101(5-1):052316. PubMed ID: 32575267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Veritable Zoology of Successive Phase Transitions in the Asymmetric
    Chmiel A; Sienkiewicz J; Fronczak A; Fronczak P
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pair approximation for the q-voter models with quenched disorder on networks.
    Jędrzejewski A; Sznajd-Weron K
    Phys Rev E; 2022 Jun; 105(6-1):064306. PubMed ID: 35854498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pair approximation for the noisy threshold q-voter model.
    Vieira AR; Peralta AF; Toral R; Miguel MS; Anteneodo C
    Phys Rev E; 2020 May; 101(5-1):052131. PubMed ID: 32575340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pair approximation for the q-voter model with independence on complex networks.
    Jędrzejewski A
    Phys Rev E; 2017 Jan; 95(1-1):012307. PubMed ID: 28208483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized Independence in the
    Abramiuk A; Sznajd-Weron K
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transitions in the q-voter model with noise on a duplex clique.
    Chmiel A; Sznajd-Weron K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052812. PubMed ID: 26651749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zealotry effects on opinion dynamics in the adaptive voter model.
    Klamser PP; Wiedermann M; Donges JF; Donner RV
    Phys Rev E; 2017 Nov; 96(5-1):052315. PubMed ID: 29347768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is Independence Necessary for a Discontinuous Phase Transition within the
    Abramiuk A; Pawłowski J; Sznajd-Weron K
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threshold q-voter model.
    Vieira AR; Anteneodo C
    Phys Rev E; 2018 May; 97(5-1):052106. PubMed ID: 29906869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness of network of networks under targeted attack.
    Dong G; Gao J; Du R; Tian L; Stanley HE; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052804. PubMed ID: 23767581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization in the random-field Kuramoto model on complex networks.
    Lopes MA; Lopes EM; Yoon S; Mendes JF; Goltsev AV
    Phys Rev E; 2016 Jul; 94(1-1):012308. PubMed ID: 27575149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growing multiplex networks with arbitrary number of layers.
    Momeni N; Fotouhi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062812. PubMed ID: 26764749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voter models on weighted networks.
    Baronchelli A; Castellano C; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066117. PubMed ID: 21797451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitting in and breaking up: A nonlinear version of coevolving voter models.
    Kureh YH; Porter MA
    Phys Rev E; 2020 Jun; 101(6-1):062303. PubMed ID: 32688568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resisting Influence: How the Strength of Predispositions to Resist Control Can Change Strategies for Optimal Opinion Control in the Voter Model.
    Brede M; Restocchi V; Stein S
    Front Robot AI; 2018; 5():34. PubMed ID: 33500920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.