These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32942422)

  • 1. Effect of a product on spontaneous droplet motion driven by a chemical reaction of surfactant.
    Tanabe T; Ogasawara T; Suematsu NJ
    Phys Rev E; 2020 Aug; 102(2-1):023102. PubMed ID: 32942422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet.
    Suematsu NJ; Saikusa K; Nagata T; Izumi S
    Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillation of Speed of a Self-Propelled Belousov-Zhabotinsky Droplet.
    Suematsu NJ; Mori Y; Amemiya T; Nakata S
    J Phys Chem Lett; 2016 Sep; 7(17):3424-8. PubMed ID: 27532330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous Mode Switching of Self-Propelled Droplet Motion Induced by a Clock Reaction in the Belousov-Zhabotinsky Medium.
    Suematsu NJ; Mori Y; Amemiya T; Nakata S
    J Phys Chem Lett; 2021 Aug; 12(31):7526-7530. PubMed ID: 34346682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-motion of an oil droplet: a simple physicochemical model of active Brownian motion.
    Sumino Y; Yoshikawa K
    Chaos; 2008 Jun; 18(2):026106. PubMed ID: 18601508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical model for self-propelled droplets driven by interfacial tension.
    Nagai KH; Tachibana K; Tobe Y; Kazama M; Kitahata H; Omata S; Nagayama M
    J Chem Phys; 2016 Mar; 144(11):114707. PubMed ID: 27004893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.
    Banno T; Kuroha R; Toyota T
    Langmuir; 2012 Jan; 28(2):1190-5. PubMed ID: 22149384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-inverted reciprocation of an oil droplet on a surfactant solution.
    Satoh Y; Sogabe Y; Kayahara K; Tanaka S; Nagayama M; Nakata S
    Soft Matter; 2017 May; 13(18):3422-3430. PubMed ID: 28436513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.
    Miura S; Banno T; Tonooka T; Osaki T; Takeuchi S; Toyota T
    Langmuir; 2014 Jul; 30(27):7977-85. PubMed ID: 24934718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A surfactant reaction model for the reciprocating motion of a self-propelled droplet.
    Tanaka S; Nakata S; Nagayama M
    Soft Matter; 2021 Jan; 17(2):388-396. PubMed ID: 33174574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical investigation on the drainage of a surfactant-modified water droplet in paraffin oil.
    Lekhlifi A; Fanzar A; Antoni M
    Adv Colloid Interface Sci; 2015 Aug; 222():446-60. PubMed ID: 25772623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-propelled oil droplets consuming "fuel" surfactant.
    Toyota T; Maru N; Hanczyc MM; Ikegami T; Sugawara T
    J Am Chem Soc; 2009 Apr; 131(14):5012-3. PubMed ID: 19351200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemosensitive running droplet.
    Sumino Y; Kitahata H; Yoshikawa K; Nagayama M; Nomura SM; Magome N; Mori Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041603. PubMed ID: 16383392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants.
    Kasuo Y; Kitahata H; Koyano Y; Takinoue M; Asakura K; Banno T
    Langmuir; 2019 Oct; 35(41):13351-13355. PubMed ID: 31550892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-elastic laser scattering for measuring inhomogeneous interfacial tension in non-equilibrium phenomena with convective flows.
    Nomoto T; Toyota T; Fujinami M
    Anal Sci; 2014; 30(7):707-16. PubMed ID: 25007928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dynamic interfacial tension on droplet formation during membrane emulsification.
    van der Graaf S; Schroën CG; van der Sman RG; Boom RM
    J Colloid Interface Sci; 2004 Sep; 277(2):456-63. PubMed ID: 15341859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-propulsion of aluminum particle-coated Janus droplet in alkaline solution.
    Li M; Li D
    J Colloid Interface Sci; 2018 Dec; 532():657-665. PubMed ID: 30121518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant Effect on Hydrate Crystallization at the Oil-Water Interface.
    Dann K; Rosenfeld L
    Langmuir; 2018 May; 34(21):6085-6094. PubMed ID: 29742353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breakup characteristics of aqueous droplet with surfactant in oil under direct current electric field.
    Luo X; Yan H; Huang X; Yang D; Wang J; He L
    J Colloid Interface Sci; 2017 Nov; 505():460-466. PubMed ID: 28633117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.