These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32942428)

  • 1. First-principles prediction of the information processing capacity of a simple genetic circuit.
    Razo-Mejia M; Marzen S; Chure G; Taubman R; Morrison M; Phillips R
    Phys Rev E; 2020 Aug; 102(2-1):022404. PubMed ID: 32942428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of a genetic circuit with regulatable multistability.
    Li T; Dong Y; Zhang X; Ji X; Luo C; Lou C; Zhang HM; Ouyang Q
    Integr Biol (Camb); 2018 Aug; 10(8):474-482. PubMed ID: 30039143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic approach to Escherichia coli cell population control using a genetic lysis circuit.
    Hsu CY; Yu TC; Lin LJ; Hu RH; Chen BS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S7. PubMed ID: 25559865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic phenotype transition of a single cell in an intermediate region of gene state switching.
    Ge H; Qian H; Xie XS
    Phys Rev Lett; 2015 Feb; 114(7):078101. PubMed ID: 25763973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic programs can be compressed and autonomously decompressed in live cells.
    Lapique N; Benenson Y
    Nat Nanotechnol; 2018 Apr; 13(4):309-315. PubMed ID: 29133926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch.
    Lou C; Liu X; Ni M; Huang Y; Huang Q; Huang L; Jiang L; Lu D; Wang M; Liu C; Chen D; Chen C; Chen X; Yang L; Ma H; Chen J; Ouyang Q
    Mol Syst Biol; 2010; 6():350. PubMed ID: 20212522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational model of gene expression in an inducible synthetic circuit.
    Ceroni F; Furini S; Cavalcanti S
    Pac Symp Biocomput; 2010; ():409-20. PubMed ID: 19908393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number.
    Tadmor AD; Tlusty T
    PLoS Comput Biol; 2008 May; 4(4):e1000038. PubMed ID: 18437222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic switching in gene networks can occur by a single-molecule event or many molecular steps.
    Choi PJ; Xie XS; Shakhnovich EI
    J Mol Biol; 2010 Feb; 396(1):230-44. PubMed ID: 19931280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Parameter-Fitness Landscape of
    Kozuch BC; Shaffer MG; Culyba MJ
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling suggests that gene circuit architecture controls phenotypic variability in a bacterial persistence network.
    Koh RS; Dunlop MJ
    BMC Syst Biol; 2012 May; 6():47. PubMed ID: 22607777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic circuit characterization by inferring RNA polymerase movement and ribosome usage.
    Espah Borujeni A; Zhang J; Doosthosseini H; Nielsen AAK; Voigt CA
    Nat Commun; 2020 Oct; 11(1):5001. PubMed ID: 33020480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks.
    Michoel T; De Smet R; Joshi A; Van de Peer Y; Marchal K
    BMC Syst Biol; 2009 May; 3():49. PubMed ID: 19422680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.
    Khan A; Saha G; Pal RK
    J Theor Biol; 2018 May; 445():9-30. PubMed ID: 29462626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refined method for the genomic integration of complex synthetic circuits.
    Ying BW; Ito Y; Shimizu Y; Yomo T
    J Biosci Bioeng; 2010 Nov; 110(5):529-36. PubMed ID: 20646959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoter architecture dictates cell-to-cell variability in gene expression.
    Jones DL; Brewster RC; Phillips R
    Science; 2014 Dec; 346(6216):1533-6. PubMed ID: 25525251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthogonality and Burdens of Heterologous AND Gate Gene Circuits in E. coli.
    Liu Q; Schumacher J; Wan X; Lou C; Wang B
    ACS Synth Biol; 2018 Feb; 7(2):553-564. PubMed ID: 29240998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronous long-term oscillations in a synthetic gene circuit.
    Potvin-Trottier L; Lord ND; Vinnicombe G; Paulsson J
    Nature; 2016 Oct; 538(7626):514-517. PubMed ID: 27732583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative circuit-host modelling framework for predicting synthetic gene network behaviours.
    Liao C; Blanchard AE; Lu T
    Nat Microbiol; 2017 Dec; 2(12):1658-1666. PubMed ID: 28947816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.