These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32942448)

  • 1. Modeling drug delivery from multiple emulsions.
    Pontrelli G; Carr EJ; Tiribocchi A; Succi S
    Phys Rev E; 2020 Aug; 102(2-1):023114. PubMed ID: 32942448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling mass diffusion for a multi-layer sphere immersed in a semi-infinite medium: application to drug delivery.
    Carr EJ; Pontrelli G
    Math Biosci; 2018 Sep; 303():1-9. PubMed ID: 29654791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical model for transdermal drug delivery from emulsions and its dependence upon formulation.
    Bernardo FP; Saraiva PM
    J Pharm Sci; 2008 Sep; 97(9):3781-809. PubMed ID: 18186500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid dissolution of propofol emulsions under sink conditions.
    Damitz R; Chauhan A
    Int J Pharm; 2015 Mar; 481(1-2):47-55. PubMed ID: 25636303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of PLGA microparticles: from polymer degradation to drug release.
    Casalini T; Rossi F; Lazzari S; Perale G; Masi M
    Mol Pharm; 2014 Nov; 11(11):4036-48. PubMed ID: 25230105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions.
    Calderó G; Montes R; Llinàs M; García-Celma MJ; Porras M; Solans C
    Colloids Surf B Biointerfaces; 2016 Sep; 145():922-931. PubMed ID: 27341306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-phase model for drug release from microparticles with combined effects of solubilisation and recrystallisation.
    Chakravarty K; Dalal DC
    Math Biosci; 2016 Feb; 272():24-33. PubMed ID: 26631511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-emulsifying pellets: relations between kinetic parameters of drug release and emulsion reconstitution-influence of formulation variables.
    Nikolakakis I; Malamataris S
    J Pharm Sci; 2014 May; 103(5):1453-65. PubMed ID: 24596121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery.
    Dluska E; Markowska-Radomska A; Metera A; Tudek B; Kosicki K
    Nanomedicine (Lond); 2017 Sep; 12(18):2183-2197. PubMed ID: 28820020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of colloidal templating using emulsion drop consolidation.
    Shen AQ; Wang D; Spicer PT
    Langmuir; 2007 Dec; 23(26):12821-6. PubMed ID: 17999540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug diffusion and release from a bioerodible spherical capsule.
    Jain A; McGinty S; Pontrelli G
    Int J Pharm; 2022 Mar; 616():121442. PubMed ID: 34990743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A redispersible dry emulsion system with simvastatin prepared via fluid bed layering as a means of dissolution enhancement of a lipophilic drug.
    Pohlen M; Pirker L; Luštrik M; Dreu R
    Int J Pharm; 2018 Oct; 549(1-2):325-334. PubMed ID: 30075251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cubic liquid crystalline structures in diluted, concentrated and highly concentrated emulsions for topical application: Influence on drug release and human skin permeation.
    Arias EM; Guiró P; Rodriguez-Abreu C; Solans C; Escribano-Ferrer E; García-Celma MJ
    Int J Pharm; 2019 Oct; 569():118531. PubMed ID: 31323372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rayleigh-Bénard convection of a model emulsion: anomalous heat-flux fluctuations and finite-size droplet effects.
    Pelusi F; Sbragaglia M; Benzi R; Scagliarini A; Bernaschi M; Succi S
    Soft Matter; 2021 Apr; 17(13):3709-3721. PubMed ID: 33690767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Emulsion and Nanoemulsion Delivery Systems: The Chemical Stability of Curcumin Decreases as Oil Droplet Size Decreases.
    Kharat M; Aberg J; Dai T; McClements DJ
    J Agric Food Chem; 2020 Aug; 68(34):9205-9212. PubMed ID: 32786867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid transfer in oil-in-water isasome emulsions: influence of arrested dynamics of the emulsion droplets entrapped in a hydrogel.
    Iglesias GR; Pirolt F; Sadeghpour A; Tomšič M; Glatter O
    Langmuir; 2013 Dec; 29(50):15496-502. PubMed ID: 24274164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coaxial oblique interface shearing: tunable generation and sorting of double emulsions for spatial gradient drug release.
    Huang F; Zhu Z; Niu Y; Zhao Y; Si T; Xu RX
    Lab Chip; 2020 Apr; 20(7):1249-1258. PubMed ID: 32129401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cationic surfactant on transport of surface-active and non-surface-active model drugs and emulsion stability in triphasic systems.
    Chidambaram N; Burgess DJ
    AAPS PharmSci; 2000; 2(3):E28. PubMed ID: 11741244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of droplet characteristics on the formation of oil-in-water emulsions stabilized by surfactant-chitosan layers.
    Mun S; Decker EA; McClements DJ
    Langmuir; 2005 Jul; 21(14):6228-34. PubMed ID: 15982024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.