These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32942463)

  • 21. Programmable Phototaxis of Metal-Phenolic Particle Microswimmers.
    Lin G; Richardson JJ; Ahmed H; Besford QA; Christofferson AJ; Beyer S; Lin Z; Rezk AR; Savioli M; Zhou J; McConville CF; Cortez-Jugo C; Yeo LY; Caruso F
    Adv Mater; 2021 Apr; 33(13):e2006177. PubMed ID: 33634513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion.
    Baker R; Kauffman JE; Laskar A; Shklyaev OE; Potomkin M; Dominguez-Rubio L; Shum H; Cruz-Rivera Y; Aranson IS; Balazs AC; Sen A
    Nanoscale; 2019 Jun; 11(22):10944-10951. PubMed ID: 31139774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable pheromone interactions among microswimmers.
    Nakayama B; Nagase H; Takahashi H; Saito Y; Hatayama S; Makino K; Yamamoto E; Saiki T
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2213713120. PubMed ID: 36812202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the motility and directionality of self-propelled colloids.
    Gomez-Solano JR; Samin S; Lozano C; Ruedas-Batuecas P; van Roij R; Bechinger C
    Sci Rep; 2017 Nov; 7(1):14891. PubMed ID: 29097762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The control effort to steer self-propelled microswimmers depends on their morphology: comparing symmetric spherical versus asymmetric
    Riede JM; Holm C; Schmitt S; Haeufle DFB
    R Soc Open Sci; 2021 Sep; 8(9):201839. PubMed ID: 34631115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reinforcement learning with artificial microswimmers.
    Muiños-Landin S; Fischer A; Holubec V; Cichos F
    Sci Robot; 2021 Mar; 6(52):. PubMed ID: 34043550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening.
    Jamali T; Naji A
    Soft Matter; 2018 Jun; 14(23):4820-4834. PubMed ID: 29845128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fully Steerable Symmetric Thermoplasmonic Microswimmers.
    Fränzl M; Muiños-Landin S; Holubec V; Cichos F
    ACS Nano; 2021 Feb; 15(2):3434-3440. PubMed ID: 33556235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors.
    Wang W; Duan W; Ahmed S; Sen A; Mallouk TE
    Acc Chem Res; 2015 Jul; 48(7):1938-46. PubMed ID: 26057233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrodynamics of a confined active Belousov-Zhabotinsky droplet.
    Chaithanya KVS; Shenoy SA; Dayal P
    Phys Rev E; 2022 Dec; 106(6-2):065103. PubMed ID: 36671180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active motion of multiphase oil droplets: emergent dynamics of squirmers with evolving internal structure.
    Wang X; Zhang R; Mozaffari A; de Pablo JJ; Abbott NL
    Soft Matter; 2021 Mar; 17(10):2985-2993. PubMed ID: 33596294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.
    Miura S; Banno T; Tonooka T; Osaki T; Takeuchi S; Toyota T
    Langmuir; 2014 Jul; 30(27):7977-85. PubMed ID: 24934718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving Swimming Performance of Photolithography-Based Microswimmers Using Curvature Structures.
    Tan L; Wang Z; Chen Z; Shi X; Cheang UK
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Swimming Characteristics of Bioinspired Helical Microswimmers Based on Soft Lotus-Root Fibers.
    Liu J; Xu T; Guan Y; Yan X; Ye C; Wu X
    Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spontaneous Mode Switching of Self-Propelled Droplet Motion Induced by a Clock Reaction in the Belousov-Zhabotinsky Medium.
    Suematsu NJ; Mori Y; Amemiya T; Nakata S
    J Phys Chem Lett; 2021 Aug; 12(31):7526-7530. PubMed ID: 34346682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clustering of microswimmers: interplay of shape and hydrodynamics.
    Theers M; Westphal E; Qi K; Winkler RG; Gompper G
    Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic Chemotaxis and Collective Behavior in Active Matter.
    Liebchen B; Löwen H
    Acc Chem Res; 2018 Dec; 51(12):2982-2990. PubMed ID: 30375857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-order simulation scheme for active particles driven by stress boundary conditions.
    Deußen B; Jayaram A; Kummer F; Wang Y; Speck T; Oberlack M
    J Phys Condens Matter; 2021 May; 33(24):. PubMed ID: 33862605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Phoretic Microswimmers Propel at Speeds Dependent upon an Adjacent Surface's Physicochemical Properties.
    Leeth Holterhoff A; Li M; Gibbs JG
    J Phys Chem Lett; 2018 Sep; 9(17):5023-5028. PubMed ID: 30122044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.