These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. SpirPro: A Spirulina proteome database and web-based tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis C1. Senachak J; Cheevadhanarak S; Hongsthong A BMC Bioinformatics; 2015 Jul; 16(1):233. PubMed ID: 26220682 [TBL] [Abstract][Full Text] [Related]
3. Revealing the key point of the temperature stress response of Arthrospira platensis C1 at the interconnection of C- and N- metabolism by proteome analyses and PPI networking. Kurdrid P; Phuengcharoen P; Senachak J; Saree S; Hongsthong A BMC Mol Cell Biol; 2020 Jun; 21(1):43. PubMed ID: 32532219 [TBL] [Abstract][Full Text] [Related]
4. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction. Yoshikawa K; Aikawa S; Kojima Y; Toya Y; Furusawa C; Kondo A; Shimizu H PLoS One; 2015; 10(12):e0144430. PubMed ID: 26640947 [TBL] [Abstract][Full Text] [Related]
5. iTRAQ-Based Quantitative Proteomic Analysis of Spirulina platensis in Response to Low Temperature Stress. Li Q; Chang R; Sun Y; Li B PLoS One; 2016; 11(11):e0166876. PubMed ID: 27902743 [TBL] [Abstract][Full Text] [Related]
6. Genome-Scale Ando D; García Martín H Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239 [TBL] [Abstract][Full Text] [Related]
7. Putative model based on iTRAQ proteomics for Spirulina morphogenesis mechanisms. Wang FS; Dong SR; Zhang HY; Wang SY J Proteomics; 2018 Jan; 171():73-80. PubMed ID: 28344024 [TBL] [Abstract][Full Text] [Related]
8. iAK692: a genome-scale metabolic model of Spirulina platensis C1. Klanchui A; Khannapho C; Phodee A; Cheevadhanarak S; Meechai A BMC Syst Biol; 2012 Jun; 6():71. PubMed ID: 22703714 [TBL] [Abstract][Full Text] [Related]
9. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses. Park JM; Kim TY; Lee SY Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215 [TBL] [Abstract][Full Text] [Related]
10. Differential proteome-metabolome profiling of YCA1-knock-out and wild type cells reveals novel metabolic pathways and cellular processes dependent on the yeast metacaspase. Ždralević M; Longo V; Guaragnella N; Giannattasio S; Timperio AM; Zolla L Mol Biosyst; 2015 Jun; 11(6):1573-83. PubMed ID: 25697364 [TBL] [Abstract][Full Text] [Related]
11. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Toya Y; Shimizu H Biotechnol Adv; 2013 Nov; 31(6):818-26. PubMed ID: 23680193 [TBL] [Abstract][Full Text] [Related]
17. Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation. Teusink B; Wiersma A; Jacobs L; Notebaart RA; Smid EJ PLoS Comput Biol; 2009 Jun; 5(6):e1000410. PubMed ID: 19521528 [TBL] [Abstract][Full Text] [Related]
18. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia. Asghari A; Marashi SA; Ansari-Pour N Syst Biol Reprod Med; 2017 Apr; 63(2):100-112. PubMed ID: 28085499 [TBL] [Abstract][Full Text] [Related]
19. Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production. Tan Y; Fang M; Jin L; Zhang C; Li HP; Xing XH J Biosci Bioeng; 2015 Oct; 120(4):438-43. PubMed ID: 25795571 [TBL] [Abstract][Full Text] [Related]
20. In silico co-factor balance estimation using constraint-based modelling informs metabolic engineering in Escherichia coli. de Arroyo Garcia L; Jones PR PLoS Comput Biol; 2020 Aug; 16(8):e1008125. PubMed ID: 32776925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]