These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32942547)

  • 1.
    Lertampaiporn S; Senachak J; Taenkaew W; Khannapho C; Hongsthong A
    Cells; 2020 Sep; 9(9):. PubMed ID: 32942547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpirPro: A Spirulina proteome database and web-based tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis C1.
    Senachak J; Cheevadhanarak S; Hongsthong A
    BMC Bioinformatics; 2015 Jul; 16(1):233. PubMed ID: 26220682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the key point of the temperature stress response of Arthrospira platensis C1 at the interconnection of C- and N- metabolism by proteome analyses and PPI networking.
    Kurdrid P; Phuengcharoen P; Senachak J; Saree S; Hongsthong A
    BMC Mol Cell Biol; 2020 Jun; 21(1):43. PubMed ID: 32532219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction.
    Yoshikawa K; Aikawa S; Kojima Y; Toya Y; Furusawa C; Kondo A; Shimizu H
    PLoS One; 2015; 10(12):e0144430. PubMed ID: 26640947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iTRAQ-Based Quantitative Proteomic Analysis of Spirulina platensis in Response to Low Temperature Stress.
    Li Q; Chang R; Sun Y; Li B
    PLoS One; 2016; 11(11):e0166876. PubMed ID: 27902743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putative model based on iTRAQ proteomics for Spirulina morphogenesis mechanisms.
    Wang FS; Dong SR; Zhang HY; Wang SY
    J Proteomics; 2018 Jan; 171():73-80. PubMed ID: 28344024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iAK692: a genome-scale metabolic model of Spirulina platensis C1.
    Klanchui A; Khannapho C; Phodee A; Cheevadhanarak S; Meechai A
    BMC Syst Biol; 2012 Jun; 6():71. PubMed ID: 22703714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
    Park JM; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential proteome-metabolome profiling of YCA1-knock-out and wild type cells reveals novel metabolic pathways and cellular processes dependent on the yeast metacaspase.
    Ždralević M; Longo V; Guaragnella N; Giannattasio S; Timperio AM; Zolla L
    Mol Biosyst; 2015 Jun; 11(6):1573-83. PubMed ID: 25697364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.
    Toya Y; Shimizu H
    Biotechnol Adv; 2013 Nov; 31(6):818-26. PubMed ID: 23680193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae.
    Garcia-Albornoz M; Holman SW; Antonisse T; Daran-Lapujade P; Teusink B; Beynon RJ; Hubbard SJ
    Mol Omics; 2020 Feb; 16(1):59-72. PubMed ID: 31868867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model.
    Yizhak K; Benyamini T; Liebermeister W; Ruppin E; Shlomi T
    Bioinformatics; 2010 Jun; 26(12):i255-60. PubMed ID: 20529914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomics analysis by iTRAQ revealed underlying changes in thermotolerance of Arthrospira platensis.
    Chang R; Lv B; Li B
    J Proteomics; 2017 Aug; 165():119-131. PubMed ID: 28645570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flux Balance Analysis with Objective Function Defined by Proteomics Data-Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine.
    Montezano D; Meek L; Gupta R; Bermudez LE; Bermudez JC
    PLoS One; 2015; 10(7):e0134014. PubMed ID: 26218987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using flux balance analysis to guide microbial metabolic engineering.
    Curran KA; Crook NC; Alper HS
    Methods Mol Biol; 2012; 834():197-216. PubMed ID: 22144361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation.
    Teusink B; Wiersma A; Jacobs L; Notebaart RA; Smid EJ
    PLoS Comput Biol; 2009 Jun; 5(6):e1000410. PubMed ID: 19521528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia.
    Asghari A; Marashi SA; Ansari-Pour N
    Syst Biol Reprod Med; 2017 Apr; 63(2):100-112. PubMed ID: 28085499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production.
    Tan Y; Fang M; Jin L; Zhang C; Li HP; Xing XH
    J Biosci Bioeng; 2015 Oct; 120(4):438-43. PubMed ID: 25795571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico co-factor balance estimation using constraint-based modelling informs metabolic engineering in Escherichia coli.
    de Arroyo Garcia L; Jones PR
    PLoS Comput Biol; 2020 Aug; 16(8):e1008125. PubMed ID: 32776925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.