These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32942645)

  • 1. An Evaluation of Three Kinematic Methods for Gait Event Detection Compared to the Kinetic-Based 'Gold Standard'.
    Zahradka N; Verma K; Behboodi A; Bodt B; Wright H; Lee SCK
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32942645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait.
    Desailly E; Daniel Y; Sardain P; Lacouture P
    Gait Posture; 2009 Jan; 29(1):76-80. PubMed ID: 18676147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic detection of gait events using kinematic data.
    O'Connor CM; Thorpe SK; O'Malley MJ; Vaughan CL
    Gait Posture; 2007 Mar; 25(3):469-74. PubMed ID: 16876414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated event detection algorithms in pathological gait.
    Bruening DA; Ridge ST
    Gait Posture; 2014; 39(1):472-7. PubMed ID: 24041468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel kinematic detection of foot-strike and toe-off events during noninstrumented treadmill running to estimate contact time.
    Patoz A; Lussiana T; Gindre C; Malatesta D
    J Biomech; 2021 Nov; 128():110737. PubMed ID: 34517256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic initial contact detection during overground walking for clinical use.
    Sharenkov A; Agres AN; Funk JF; Duda GN; Boeth H
    Gait Posture; 2014 Sep; 40(4):730-4. PubMed ID: 25161008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait event detection using a thigh-worn accelerometer.
    Gurchiek RD; Garabed CP; McGinnis RS
    Gait Posture; 2020 Jul; 80():214-216. PubMed ID: 32535399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Different Pressure-Based Foot Contact Event Detection Algorithms across Different Slopes and Speeds.
    Blades S; Marriott H; Hundza S; Honert EC; Stellingwerff T; Klimstra M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Detection of Seven Phases of Gait in Children with Cerebral Palsy Using Two Gyroscopes.
    Behboodi A; Zahradka N; Wright H; Alesi J; Lee SCK
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31159379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated gait event detection for a variety of locomotion tasks using a novel gyroscope-based algorithm.
    Fadillioglu C; Stetter BJ; Ringhof S; Krafft FC; Sell S; Stein T
    Gait Posture; 2020 Sep; 81():102-108. PubMed ID: 32707401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of gait events in children with spastic cerebral palsy: comparison between the force plate and algorithms.
    Gonçalves RV; Fonseca ST; Araújo PA; Araújo VL; Barboza TM; Martins GA; Mancini MC
    Braz J Phys Ther; 2020; 24(5):392-398. PubMed ID: 31208861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of gait event detection by centre of pressure during target stepping in healthy and paretic gait.
    van der Veen SM; Hammerbeck U; Baker RJ; Hollands KL
    J Biomech; 2018 Oct; 79():218-222. PubMed ID: 30135014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model.
    Lambrecht S; Harutyunyan A; Tanghe K; Afschrift M; De Schutter J; Jonkers I
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28338618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection.
    Nazarahari M; Khandan A; Khan A; Rouhani H
    J Biomech; 2022 Jan; 130():110880. PubMed ID: 34871897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards validation and standardization of automatic gait event identification algorithms for use in paediatric pathological populations.
    Visscher RMS; Sansgiri S; Freslier M; Harlaar J; Brunner R; Taylor WR; Singh NB
    Gait Posture; 2021 May; 86():64-69. PubMed ID: 33684617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects.
    Ben Mansour K; Rezzoug N; Gorce P
    Gait Posture; 2015 Oct; 42(4):409-14. PubMed ID: 26341531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic real-time gait event detection in children using deep neural networks.
    Kidziński Ł; Delp S; Schwartz M
    PLoS One; 2019; 14(1):e0211466. PubMed ID: 30703141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time kinematic-based detection of foot-strike during walking.
    Karakasis C; Artemiadis P
    J Biomech; 2021 Dec; 129():110849. PubMed ID: 34800744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust deep learning-based gait event detection across various pathologies.
    Dumphart B; Slijepcevic D; Zeppelzauer M; Kranzl A; Unglaube F; Baca A; Horsak B
    PLoS One; 2023; 18(8):e0288555. PubMed ID: 37566568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.