BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32942863)

  • 1. Metallic additive manufacturing for bone-interfacing implants.
    Sarker A; Leary M; Fox K
    Biointerphases; 2020 Sep; 15(5):050801. PubMed ID: 32942863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review.
    Li J; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    J Mech Behav Biomed Mater; 2020 May; 105():103671. PubMed ID: 32090892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manual polishing of 3D printed metals produced by laser powder bed fusion reduces biofilm formation.
    McGaffey M; Zur Linden A; Bachynski N; Oblak M; James F; Weese JS
    PLoS One; 2019; 14(2):e0212995. PubMed ID: 30811509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus.
    van Hengel IAJ; Riool M; Fratila-Apachitei LE; Witte-Bouma J; Farrell E; Zadpoor AA; Zaat SAJ; Apachitei I
    Biomaterials; 2017 Sep; 140():1-15. PubMed ID: 28622569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.
    Schildhauer TA; Robie B; Muhr G; Köller M
    J Orthop Trauma; 2006 Jul; 20(7):476-84. PubMed ID: 16891939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Biointerface: Low-Temperature Surface Modification Strategies for Orthopedic Implants to Enhance Osteogenic and Antimicrobial Activity.
    Kim S; Chen JB; Clifford A
    ACS Appl Bio Mater; 2021 Sep; 4(9):6619-6629. PubMed ID: 35006965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials.
    Tuomi JT; Björkstrand RV; Pernu ML; Salmi MV; Huotilainen EI; Wolff JE; Vallittu PK; Mäkitie AA
    J Mater Sci Mater Med; 2017 Mar; 28(3):53. PubMed ID: 28197824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Alloplastic Materials and their Propensity to Bacterial Colonisation].
    Ballay R; Landor I; Růžička F; Melicherčík P; Tomaides J; Jahoda D
    Acta Chir Orthop Traumatol Cech; 2016; 83(3):163-8. PubMed ID: 27484073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 3D printed surface topography and normal force on implant expulsion.
    Heimbrook A; Kelly C; Gall K
    J Mech Behav Biomed Mater; 2022 Jun; 130():105208. PubMed ID: 35395449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits.
    Salou L; Hoornaert A; Louarn G; Layrolle P
    Acta Biomater; 2015 Jan; 11():494-502. PubMed ID: 25449926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Titania Nanotubes in Bone Biology.
    Nair M; Elizabeth E
    J Nanosci Nanotechnol; 2015 Feb; 15(2):939-55. PubMed ID: 26353600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of titanium alloys for biomedical application: from macro to nano scale.
    Pedreira De Oliveira D; Ottria L; Gargari M; Candotto V; Silvestre FJ; Lauritano D
    J Biol Regul Homeost Agents; 2017; 31(2 Suppl 1):221-232. PubMed ID: 28691477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration.
    Mushahary D; Sravanthi R; Li Y; Kumar MJ; Harishankar N; Hodgson PD; Wen C; Pande G
    Int J Nanomedicine; 2013; 8():2887-902. PubMed ID: 23976848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.
    Sing SL; An J; Yeong WY; Wiria FE
    J Orthop Res; 2016 Mar; 34(3):369-85. PubMed ID: 26488900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Biofilm Eradication on Bone Implants Using Red Phosphorus and Near-Infrared Light.
    Tan L; Li J; Liu X; Cui Z; Yang X; Zhu S; Li Z; Yuan X; Zheng Y; Yeung KWK; Pan H; Wang X; Wu S
    Adv Mater; 2018 Aug; 30(31):e1801808. PubMed ID: 29923229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic bone: Design by additive manufacturing.
    Barba D; Alabort E; Reed RC
    Acta Biomater; 2019 Oct; 97():637-656. PubMed ID: 31394295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats.
    Diefenbeck M; Mückley T; Schrader C; Schmidt J; Zankovych S; Bossert J; Jandt KD; Faucon M; Finger U
    Biomaterials; 2011 Nov; 32(32):8041-7. PubMed ID: 21840591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects.
    Jing D; Tong S; Zhai M; Li X; Cai J; Wu Y; Shen G; Zhang X; Xu Q; Guo Z; Luo E
    Sci Rep; 2015 Nov; 5():17134. PubMed ID: 26601709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications.
    Kaur M; Singh K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():844-862. PubMed ID: 31147056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.