These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32943150)

  • 1. Strategies for the expression and characterization of artificial myoglobin-based carbene transferases.
    Carminati DM; Moore EJ; Fasan R
    Methods Enzymol; 2020; 644():35-61. PubMed ID: 32943150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity.
    Carminati DM; Fasan R
    ACS Catal; 2019 Oct; 9(10):9683-9697. PubMed ID: 32257582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoselective Cyclopropanation over Carbene Y-H Insertion Catalyzed by an Engineered Carbene Transferase.
    Moore EJ; Steck V; Bajaj P; Fasan R
    J Org Chem; 2018 Jul; 83(14):7480-7490. PubMed ID: 29905476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin.
    Moore EJ; Fasan R
    Tetrahedron; 2019 Apr; 75(16):2357-2363. PubMed ID: 31133770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncanonical Heme Ligands Steer Carbene Transfer Reactivity in an Artificial Metalloenzyme*.
    Pott M; Tinzl M; Hayashi T; Ota Y; Dunkelmann D; Mittl PRE; Hilvert D
    Angew Chem Int Ed Engl; 2021 Jun; 60(27):15063-15068. PubMed ID: 33880851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal Substitution Modulates the Reactivity and Extends the Reaction Scope of Myoglobin Carbene Transfer Catalysts.
    Sreenilayam G; Moore EJ; Steck V; Fasan R
    Adv Synth Catal; 2017 Jun; 359(12):2076-2089. PubMed ID: 29606929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repurposing myoglobin into a carbene transferase for a [2,3]-sigmatropic Sommelet-Hauser rearrangement.
    Pujol M; Degeilh L; Sauty de Chalon T; Réglier M; Simaan AJ; Decroos C
    J Inorg Biochem; 2024 Nov; 260():112688. PubMed ID: 39111220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity.
    Kagawa Y; Oohora K; Himiyama T; Suzuki A; Hayashi T
    Angew Chem Int Ed Engl; 2024 Sep; 63(36):e202403485. PubMed ID: 38780472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor.
    Sreenilayam G; Moore EJ; Steck V; Fasan R
    ACS Catal; 2017; 7(11):7629-7633. PubMed ID: 29576911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer.
    Yang Y; Arnold FH
    Acc Chem Res; 2021 Mar; 54(5):1209-1225. PubMed ID: 33491448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of myoglobin-based carbene transferases for monoterpene derivatization.
    Sun Y; Tang Y; Zhou J; Guo B; Yuan F; Yao B; Yu Y; Li C
    Biochem Biophys Res Commun; 2024 Aug; 722():150160. PubMed ID: 38795453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution.
    Wei Y; Tinoco A; Steck V; Fasan R; Zhang Y
    J Am Chem Soc; 2018 Feb; 140(5):1649-1662. PubMed ID: 29268614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of RuMb: Toward a Green Catalyst for Carbene Insertion Reactions.
    Wolf MW; Vargas DA; Lehnert N
    Inorg Chem; 2017 May; 56(10):5623-5635. PubMed ID: 28443661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic solvent stability and long-term storage of myoglobin-based carbene transfer biocatalysts.
    Pineda-Knauseder AJ; Vargas DA; Fasan R
    Biotechnol Appl Biochem; 2020 Jul; 67(4):516-526. PubMed ID: 32542734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis.
    Natoli SN; Hartwig JF
    Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational approach to understand the role of metals and axial ligands in artificial heme enzyme catalyzed C-H insertion.
    Balhara R; Chatterjee R; Jindal G
    Phys Chem Chem Phys; 2021 Apr; 23(15):9500-9511. PubMed ID: 33885085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts.
    Bordeaux M; Tyagi V; Fasan R
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1744-8. PubMed ID: 25538035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.