BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32943186)

  • 1. Chronic high fat diet impairs glucagon like peptide-1 sensitivity in vagal afferents.
    Al Helaili A; Park SJ; Beyak MJ
    Biochem Biophys Res Commun; 2020 Nov; 533(1):110-117. PubMed ID: 32943186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased TASK channel-mediated currents underlie high-fat diet induced vagal afferent dysfunction.
    Park SJ; Yu Y; Wagner B; Valinsky WC; Lomax AE; Beyak MJ
    Am J Physiol Gastrointest Liver Physiol; 2018 Oct; 315(4):G592-G601. PubMed ID: 29746171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse.
    Daly DM; Park SJ; Valinsky WC; Beyak MJ
    J Physiol; 2011 Jun; 589(Pt 11):2857-70. PubMed ID: 21486762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible nitric oxide synthase-derived nitric oxide reduces vagal satiety signalling in obese mice.
    Yu Y; Park SJ; Beyak MJ
    J Physiol; 2019 Mar; 597(6):1487-1502. PubMed ID: 30565225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat.
    Bucinskaite V; Tolessa T; Pedersen J; Rydqvist B; Zerihun L; Holst JJ; Hellström PM
    Neurogastroenterol Motil; 2009 Sep; 21(9):978-e78. PubMed ID: 19453518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.
    Kentish SJ; Frisby CL; Kritas S; Li H; Hatzinikolas G; O'Donnell TA; Wittert GA; Page AJ
    PLoS One; 2015; 10(8):e0135892. PubMed ID: 26285043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats.
    Krieger JP; Santos da Conceição EP; Sanchez-Watts G; Arnold M; Pettersen KG; Mohammed M; Modica S; Lossel P; Morrison SF; Madden CJ; Watts AG; Langhans W; Lee SJ
    Am J Physiol Regul Integr Comp Physiol; 2018 Oct; 315(4):R708-R720. PubMed ID: 29847161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.
    Iwasaki Y; Maejima Y; Suyama S; Yoshida M; Arai T; Katsurada K; Kumari P; Nakabayashi H; Kakei M; Yada T
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R360-9. PubMed ID: 25540101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat.
    Nelson DW; Sharp JW; Brownfield MS; Raybould HE; Ney DM
    Endocrinology; 2007 May; 148(5):1954-62. PubMed ID: 17234710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of high-fat diet on mechanosensitive transient receptor potential channel activation in vagal afferent neurons.
    Park SJ; Yu Y; Beyak MJ
    Can J Physiol Pharmacol; 2021 Jun; 99(6):660-666. PubMed ID: 33108741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gastrointestinal Distension by Pectin-Containing Carbonated Solution Suppresses Food Intake and Enhances Glucose Tolerance
    Ohbayashi K; Oyama Y; Yamaguchi C; Asano T; Yada T; Iwasaki Y
    Front Endocrinol (Lausanne); 2021; 12():676869. PubMed ID: 34168616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents.
    Troy AE; Simmonds SS; Stocker SD; Browning KN
    J Physiol; 2016 Jan; 594(1):99-114. PubMed ID: 26456775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of reduced leptin-mediated satiety signaling during obesity.
    Park SJ; Yu Y; Zides CG; Beyak MJ
    Int J Obes (Lond); 2022 Jun; 46(6):1212-1221. PubMed ID: 35241786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Restricted Feeding Prevents Ablation of Diurnal Rhythms in Gastric Vagal Afferent Mechanosensitivity Observed in High-Fat Diet-Induced Obese Mice.
    Kentish SJ; Hatzinikolas G; Li H; Frisby CL; Wittert GA; Page AJ
    J Neurosci; 2018 May; 38(22):5088-5095. PubMed ID: 29760179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin.
    de Lartigue G; de La Serre CB; Raybould HE
    Physiol Behav; 2011 Nov; 105(1):100-5. PubMed ID: 21376066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucagon-like peptide-1 and insulin synergistically activate vagal afferent neurons.
    Iwasaki Y; Goswami C; Yada T
    Neuropeptides; 2017 Oct; 65():77-82. PubMed ID: 28624122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High fat diet induced changes in gastric vagal afferent response to adiponectin.
    Kentish SJ; Ratcliff K; Li H; Wittert GA; Page AJ
    Physiol Behav; 2015 Dec; 152(Pt B):354-62. PubMed ID: 26074203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucagon-like peptide-1 inhibits voltage-gated potassium currents in mouse nodose ganglion neurons.
    Gaisano GG; Park SJ; Daly DM; Beyak MJ
    Neurogastroenterol Motil; 2010 Apr; 22(4):470-9, e111. PubMed ID: 20003076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lixisenatide requires a functional gut-vagus nerve-brain axis to trigger insulin secretion in controls and type 2 diabetic mice.
    Charpentier J; Waget A; Klopp P; Magnan C; Cruciani-Guglielmacci C; Lee SJ; Burcelin R; Grasset E
    Am J Physiol Gastrointest Liver Physiol; 2018 Nov; 315(5):G671-G684. PubMed ID: 30070580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roux‑en‑Y gastric bypass surgery triggers rapid DNA fragmentation in vagal afferent neurons in rats.
    Minaya DM; Di Lorenzo PM; Hajnal A; Czaja K
    Acta Neurobiol Exp (Wars); 2019; 79(4):432-444. PubMed ID: 31885399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.