BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 32943621)

  • 1. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring.
    Zhang L; Kumar KS; He H; Cai CJ; He X; Gao H; Yue S; Li C; Seet RC; Ren H; Ouyang J
    Nat Commun; 2020 Sep; 11(1):4683. PubMed ID: 32943621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin Conformal Polymer Electrodes for Clinical ECG and EEG Recordings.
    Stauffer F; Thielen M; Sauter C; Chardonnens S; Bachmann S; Tybrandt K; Peters C; Hierold C; Vörös J
    Adv Healthc Mater; 2018 Apr; 7(7):e1700994. PubMed ID: 29330962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric Conductive Adhesive-Based Ultrathin Epidermal Electrodes for Long-Term Monitoring of Electrophysiological Signals.
    Shin JH; Choi JY; June K; Choi H; Kim TI
    Adv Mater; 2024 Jun; 36(23):e2313157. PubMed ID: 38421078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable and Self-Adhesive PEDOT:PSS Blend with High Sweat Tolerance as Conformal Biopotential Dry Electrodes.
    Cao J; Yang X; Rao J; Mitriashkin A; Fan X; Chen R; Cheng H; Wang X; Goh J; Leo HL; Ouyang J
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39159-39171. PubMed ID: 35973944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable Sponge Electrodes for Long-Term and Motion-Artifact-Tolerant Recording of High-Quality Electrophysiologic Signals.
    Lo LW; Zhao J; Aono K; Li W; Wen Z; Pizzella S; Wang Y; Chakrabartty S; Wang C
    ACS Nano; 2022 Aug; 16(8):11792-11801. PubMed ID: 35861486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ECG signal quality in intermittent long-term dry electrode recordings with controlled motion artifacts.
    Joutsen A; Cömert A; Kaappa E; Vanhatalo K; Riistama J; Vehkaoja A; Eskola H
    Sci Rep; 2024 Apr; 14(1):8882. PubMed ID: 38632263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kirigami-Structured, Low-Impedance, and Skin-Conformal Electronics for Long-Term Biopotential Monitoring and Human-Machine Interfaces.
    Xia M; Liu J; Kim BJ; Gao Y; Zhou Y; Zhang Y; Cao D; Zhao S; Li Y; Ahn JH
    Adv Sci (Weinh); 2024 Jan; 11(1):e2304871. PubMed ID: 37984876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel dry polymer foam electrodes for long-term EEG measurement.
    Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY
    IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology.
    Zhao Y; Zhang S; Yu T; Zhang Y; Ye G; Cui H; He C; Jiang W; Zhai Y; Lu C; Gu X; Liu N
    Nat Commun; 2021 Aug; 12(1):4880. PubMed ID: 34385444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comb-shaped polymer-based Dry electrodes for EEG/ECG measurements with high user comfort.
    Chen YH; Op de Beeck M; Vanderheyden L; Mihajlovic V; Grundlehner B; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():551-4. PubMed ID: 24109746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.
    Puurtinen MM; Komulainen SM; Kauppinen PK; Malmivuo JA; Hyttinen JA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6012-5. PubMed ID: 17946734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofiber web textile dry electrodes for long-term biopotential recording.
    Oh TI; Yoon S; Kim TE; Wi H; Kim KJ; Woo EJ; Sadleir RJ
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):204-11. PubMed ID: 23853303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A motion artifact generation and assessment system for the rapid testing of surface biopotential electrodes.
    Cömert A; Hyttinen J
    Physiol Meas; 2015 Jan; 36(1):1-25. PubMed ID: 25500614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance spectroscopy of changes in skin-electrode impedance induced by motion.
    Cömert A; Hyttinen J
    Biomed Eng Online; 2014 Nov; 13():149. PubMed ID: 25404355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A direct comparison of wet, dry and insulating bioelectric recording electrodes.
    Searle A; Kirkup L
    Physiol Meas; 2000 May; 21(2):271-83. PubMed ID: 10847194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry-contact and noncontact biopotential electrodes: methodological review.
    Chi YM; Jung TP; Cauwenberghs G
    IEEE Rev Biomed Eng; 2010; 3():106-19. PubMed ID: 22275204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hairy-Skin-Adaptive Viscoelastic Dry Electrodes for Long-Term Electrophysiological Monitoring.
    Tian Q; Zhao H; Wang X; Jiang Y; Zhu M; Yelemulati H; Xie R; Li Q; Su R; Cao Z; Jiang N; Huang J; Li G; Chen S; Chen X; Liu Z
    Adv Mater; 2023 Jul; 35(30):e2211236. PubMed ID: 37072159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of Skin-Electrode Contact Impedance on Material and Skin Hydration.
    Goyal K; Borkholder DA; Day SW
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording.
    Chen YH; Op de Beeck M; Vanderheyden L; Carrette E; Mihajlović V; Vanstreels K; Grundlehner B; Gadeyne S; Boon P; Van Hoof C
    Sensors (Basel); 2014 Dec; 14(12):23758-80. PubMed ID: 25513825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-Scale topography dry electrode for biopotential measurements.
    Vanlerberghe F; De Volder M; de Beeck MO; Penders J; Reynaerts D; Puers R; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1892-5. PubMed ID: 22254700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.