These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32943629)

  • 1. Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes.
    Qin J; Barrio J; Peng G; Tzadikov J; Abisdris L; Volokh M; Shalom M
    Nat Commun; 2020 Sep; 11(1):4701. PubMed ID: 32943629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Water-Splitting Carbon Nitride Photoelectrochemical Cell with Efficient Charge Separation and Remarkably Low Onset Potential.
    Peng G; Albero J; Garcia H; Shalom M
    Angew Chem Int Ed Engl; 2018 Nov; 57(48):15807-15811. PubMed ID: 30328234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron and Sodium Doping of Polymeric Carbon Nitride Photoanodes for Photoelectrochemical Water Splitting.
    Shmila T; Mondal S; Barzilai S; Karjule N; Volokh M; Shalom M
    Small; 2023 Oct; 19(42):e2303602. PubMed ID: 37344993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient Polymeric Carbon Nitride Photoanode with Excellent Electron Diffusion Length and Hole Extraction Properties.
    Karjule N; Barrio J; Xing L; Volokh M; Shalom M
    Nano Lett; 2020 Jun; 20(6):4618-4624. PubMed ID: 32407122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Growth of Polymeric Carbon Nitride Nanosheet Photoanode for Greatly Efficient Photoelectrochemical Water-Splitting.
    Zhang J; Zhang J; Dong C; Xia Y; Jiang L; Wang G; Wang R; Chen J
    Small; 2023 Aug; 19(34):e2208049. PubMed ID: 37127867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling the Photoelectrochemical Water Splitting of Nanometer-Thick Carbon Nitride Layer.
    Zhi F; Wu S; Lai C; He M; Deng W; Zhang D; Peng X; Wu Q; Xia J; Lu ZH; Wang M; Zhang WG; Xu J; Liu C; Peng G
    Small; 2024 Apr; ():e2401123. PubMed ID: 38659372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NC Meets CN: Porous Photoanodes with Polymeric Carbon Nitride/ZnSe Nanocrystal Heterojunctions for Photoelectrochemical Applications.
    Mondal S; Naor T; Volokh M; Stone D; Albero J; Levi A; Vakahi A; García H; Banin U; Shalom M
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38153-38162. PubMed ID: 39010305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertically Aligned Porous Organic Semiconductor Nanorod Array Photoanodes for Efficient Charge Utilization.
    Guo B; Tian L; Xie W; Batool A; Xie G; Xiang Q; Jan SU; Boddula R; Gong JR
    Nano Lett; 2018 Sep; 18(9):5954-5960. PubMed ID: 30102049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing extended visible light responsive polymeric carbon nitrides for photocatalytic and photoelectrocatalytic applications.
    Mondal S; Mark G; Abisdris L; Li J; Shmila T; Tzadikov J; Volokh M; Xing L; Shalom M
    Mater Horiz; 2023 Apr; 10(4):1363-1372. PubMed ID: 36723245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport.
    Prakash J; Prasad U; Alexander R; Bahadur J; Dasgupta K; Kannan ANM
    Langmuir; 2019 Nov; 35(45):14492-14504. PubMed ID: 31618038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of the TiO
    Fan X; Wang T; Gao B; Gong H; Xue H; Guo H; Song L; Xia W; Huang X; He J
    Langmuir; 2016 Dec; 32(50):13322-13332. PubMed ID: 27936327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BiVO
    Xia L; Li J; Bai J; Li L; Chen S; Zhou B
    Nanomicro Lett; 2018; 10(1):11. PubMed ID: 30393660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformal Macroporous Inverse Opal Oxynitride-Based Photoanode for Robust Photoelectrochemical Water Splitting.
    Ran L; Qiu S; Zhai P; Li Z; Gao J; Zhang X; Zhang B; Wang C; Sun L; Hou J
    J Am Chem Soc; 2021 May; 143(19):7402-7413. PubMed ID: 33961743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of heterojunction photoanode via facile synthesis of CoOx/CN nanocomposites for enhanced visible-light-driven photoelectrochemical degradation of clofibric acid.
    Zhang L; Wei C; Tang H; Wang H; Bian Z
    Chemosphere; 2021 Oct; 281():130825. PubMed ID: 34000657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination Chemistry Engineered Polymeric Carbon Nitride Photoanode with Ultralow Onset Potential for Water Splitting.
    Fan X; Wang Z; Lin T; Du D; Xiao M; Chen P; Monny SA; Huang H; Lyu M; Lu M; Wang L
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202204407. PubMed ID: 35650689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation.
    Ruan Q; Luo W; Xie J; Wang Y; Liu X; Bai Z; Carmalt CJ; Tang J
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8221-8225. PubMed ID: 28520233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Deposition of Crystalline Ta
    Hajibabaei H; Little DJ; Pandey A; Wang D; Mi Z; Hamann TW
    ACS Appl Mater Interfaces; 2019 May; 11(17):15457-15466. PubMed ID: 30964262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced photoelectrochemical performance of NaNbO
    Kumar D; Sharma S; Khare N
    Nanotechnology; 2020 Mar; 31(13):135402. PubMed ID: 31747651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Carbon Nitride Homojunction Photoelectrode for Solar-Driven Water Splitting.
    Lei Y; Si W; Wang Y; Tan H; Di L; Wang L; Liang J; Hou F
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6726-6734. PubMed ID: 36692988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.