BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32943662)

  • 1. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells.
    Bhardwaj A; Parekh K; Jain N
    Sci Rep; 2020 Sep; 10(1):15249. PubMed ID: 32943662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of magnetic fluid hyperthermia protocols for the elimination of breast cancer cells MCF7 using Mn-Zn ferrite ferrofluid.
    Bhardwaj A; Parekh K; Jain N
    J Mater Sci Mater Med; 2023 Mar; 34(3):11. PubMed ID: 36917271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preparation and characterization of Mn-Zn ferrite oxygene nanoparticle for tumor thermotherapy].
    Jia X; Zhang D; Zheng J; Gu N; Zhu W; Fan X; Jin L; Wan M; Li Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1263-6. PubMed ID: 17228722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.
    Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.
    Lin M; Huang J; Sha M
    J Nanosci Nanotechnol; 2014 Jan; 14(1):792-802. PubMed ID: 24730298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.
    Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I
    Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.
    Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The anti-hepatoma effect of nanosized Mn-Zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo.
    Lin M; Zhang D; Huang J; Zhang J; Xiao W; Yu H; Zhang L; Ye J
    Nanotechnology; 2013 Jun; 24(25):255101. PubMed ID: 23708194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application.
    Beeran AE; Fernandez FB; Nazeer SS; Jayasree RS; John A; Anil S; Vellappally S; Al Kheraif AA; Varma PR
    Colloids Surf B Biointerfaces; 2015 Dec; 136():1089-97. PubMed ID: 26595389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy.
    Liu XL; Ng CT; Chandrasekharan P; Yang HT; Zhao LY; Peng E; Lv YB; Xiao W; Fang J; Yi JB; Zhang H; Chuang KH; Bay BH; Ding J; Fan HM
    Adv Healthc Mater; 2016 Aug; 5(16):2092-104. PubMed ID: 27297640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(x)Zn(1-x)Fe(2)O(4) nanoparticles for induced tumor cell apoptosis.
    Qu Y; Li J; Ren J; Leng J; Lin C; Shi D
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16867-79. PubMed ID: 25204363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction Heating Efficiency of Water-Dispersible Mn
    Ningombam GS; Ningthoujam RS; Kalkura SN; Singh NR
    J Phys Chem B; 2018 Jul; 122(27):6862-6871. PubMed ID: 29957949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility of Mn0.4Zn0.6Fe2O4 Magnetic Nanoparticles and Their Thermotherapy on VX2-Carcinoma-Induced Liver Tumors.
    Yuan CY; Tang QS; Zhang DS
    J Nanosci Nanotechnol; 2015 Jan; 15(1):74-84. PubMed ID: 26328307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological approach to induce human fibroblast apoptosis using superparamagnetic iron oxide nanoparticles.
    Ferraz FS; López JL; Lacerda SMSN; Procópio MS; Figueiredo AFA; Martins EMN; Guimarães PPG; Ladeira LO; Kitten GT; Dias FF; Domingues RZ; Costa GMJ
    J Inorg Biochem; 2020 May; 206():111017. PubMed ID: 32120160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of monodispersed water dispersible Fe
    Sharma KS; Ningthoujam RS; Dubey AK; Chattopadhyay A; Phapale S; Juluri RR; Mukherjee S; Tewari R; Shetake NG; Pandey BN; Vatsa RK
    Sci Rep; 2018 Oct; 8(1):14766. PubMed ID: 30283083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications.
    Chandrasekharan P; Tay ZW; Hensley D; Zhou XY; Fung BK; Colson C; Lu Y; Fellows BD; Huynh Q; Saayujya C; Yu E; Orendorff R; Zheng B; Goodwill P; Rinaldi C; Conolly S
    Theranostics; 2020; 10(7):2965-2981. PubMed ID: 32194849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Heat Dissipation Study of Iron Oxide Nanoparticles Embedded an Agar Phantom for the Purpose of Magnetic Fluid Hyperthermia.
    Yamamoto Y; Itoh T; Irieda T
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5469-5475. PubMed ID: 30961698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination.
    Garanina AS; Naumenko VA; Nikitin AA; Myrovali E; Petukhova AY; Klimyuk SV; Nalench YA; Ilyasov AR; Vodopyanov SS; Erofeev AS; Gorelkin PV; Angelakeris M; Savchenko AG; Wiedwald U; Majouga Dr AG; Abakumov MA
    Nanomedicine; 2020 Apr; 25():102171. PubMed ID: 32084594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalization of La(0.7)Sr(0.3)MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications.
    Thorat ND; Khot VM; Salunkhe AB; Ningthoujam RS; Pawar SH
    Colloids Surf B Biointerfaces; 2013 Apr; 104():40-7. PubMed ID: 23298586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.