BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32944760)

  • 1. The assimilation of different carbon sources in Candida albicans: Fitness and pathogenicity.
    Lok B; Adam MAA; Kamal LZM; Chukwudi NA; Sandai R; Sandai D
    Med Mycol; 2021 Feb; 59(2):115-125. PubMed ID: 32944760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence.
    Williams RB; Lorenz MC
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylase Sir2 promotes the systemic
    Yang C; Li G; Zhang Q; Bai W; Li Q; Zhang P; Zhang J
    mBio; 2024 Jun; 15(6):e0044524. PubMed ID: 38682948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans.
    Sandai D; Yin Z; Selway L; Stead D; Walker J; Leach MD; Bohovych I; Ene IV; Kastora S; Budge S; Munro CA; Odds FC; Gow NA; Brown AJ
    mBio; 2012 Dec; 3(6):. PubMed ID: 23232717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans.
    Huang X; Chen X; He Y; Yu X; Li S; Gao N; Niu L; Mao Y; Wang Y; Wu X; Wu W; Wu J; Zhou D; Zhan X; Chen C
    PLoS Pathog; 2017 Jun; 13(6):e1006414. PubMed ID: 28570675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans.
    Guan G; Wang H; Liang W; Cao C; Tao L; Naseem S; Konopka JB; Wang Y; Huang G
    Fungal Genet Biol; 2015 Aug; 81():150-9. PubMed ID: 25626172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence.
    Childers DS; Raziunaite I; Mol Avelar G; Mackie J; Budge S; Stead D; Gow NA; Lenardon MD; Ballou ER; MacCallum DM; Brown AJ
    PLoS Pathog; 2016 Apr; 12(4):e1005566. PubMed ID: 27073846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion as an important step in the Candida albicans biofilm developmental cycle.
    Uppuluri P; Chaturvedi AK; Srinivasan A; Banerjee M; Ramasubramaniam AK; Köhler JR; Kadosh D; Lopez-Ribot JL
    PLoS Pathog; 2010 Mar; 6(3):e1000828. PubMed ID: 20360962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress adaptation in a pathogenic fungus.
    Brown AJ; Budge S; Kaloriti D; Tillmann A; Jacobsen MD; Yin Z; Ene IV; Bohovych I; Sandai D; Kastora S; Potrykus J; Ballou ER; Childers DS; Shahana S; Leach MD
    J Exp Biol; 2014 Jan; 217(Pt 1):144-55. PubMed ID: 24353214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes.
    Ramírez MA; Lorenz MC
    Eukaryot Cell; 2007 Feb; 6(2):280-90. PubMed ID: 17158734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Snf1-activating kinase Sak1 is a key regulator of metabolic adaptation and in vivo fitness of Candida albicans.
    Ramírez-Zavala B; Mottola A; Haubenreißer J; Schneider S; Allert S; Brunke S; Ohlsen K; Hube B; Morschhäuser J
    Mol Microbiol; 2017 Jun; 104(6):989-1007. PubMed ID: 28337802
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Zeng L; Huang Y; Tan J; Peng J; Hu N; Liu Q; Cao Y; Zhang Y; Chen J; Huang X
    Front Cell Infect Microbiol; 2023; 13():1136698. PubMed ID: 36923588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of Upc2p-Inducible
    Luna-Tapia A; Willems HME; Parker JE; Tournu H; Barker KS; Nishimoto AT; Rogers PD; Kelly SL; Peters BM; Palmer GE
    mBio; 2018 May; 9(3):. PubMed ID: 29789366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality.
    Lagree K; Woolford CA; Huang MY; May G; McManus CJ; Solis NV; Filler SG; Mitchell AP
    PLoS Genet; 2020 Jan; 16(1):e1008582. PubMed ID: 31961865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation.
    Song Y; Li S; Zhao Y; Zhang Y; Lv Y; Jiang Y; Wang Y; Li D; Zhang H
    Int J Med Microbiol; 2019 Sep; 309(6):151330. PubMed ID: 31471070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans.
    Carman AJ; Vylkova S; Lorenz MC
    Eukaryot Cell; 2008 Oct; 7(10):1733-41. PubMed ID: 18689527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen.
    Ene IV; Adya AK; Wehmeier S; Brand AC; MacCallum DM; Gow NA; Brown AJ
    Cell Microbiol; 2012 Sep; 14(9):1319-35. PubMed ID: 22587014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity.
    Ruiz-Herrera J; Elorza MV; Valentín E; Sentandreu R
    FEMS Yeast Res; 2006 Jan; 6(1):14-29. PubMed ID: 16423067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candida albicans pathogenicity mechanisms.
    Mayer FL; Wilson D; Hube B
    Virulence; 2013 Feb; 4(2):119-28. PubMed ID: 23302789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans.
    McBride AE
    Curr Genet; 2017 Dec; 63(6):989-995. PubMed ID: 28512683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.