These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32945000)

  • 1. Recent Progress in Nanolaser Technology.
    Jeong KY; Hwang MS; Kim J; Park JS; Lee JM; Park HG
    Adv Mater; 2020 Dec; 32(51):e2001996. PubMed ID: 32945000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perovskite Topological Lasers: A Brand New Combination.
    Wang L; Wu L; Pan Y
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking plasmonic nanolaser emission by selective extraction of electromagnetic near-field from photonic microcavity.
    Deng Q; Kang M; Zheng D; Zhang S; Xu H
    Nanoscale; 2018 Apr; 10(16):7431-7439. PubMed ID: 29637981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges.
    Liang Y; Li C; Huang YZ; Zhang Q
    ACS Nano; 2020 Nov; 14(11):14375-14390. PubMed ID: 33119269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array.
    Zhang C; Lu Y; Ni Y; Li M; Mao L; Liu C; Zhang D; Ming H; Wang P
    Nano Lett; 2015 Feb; 15(2):1382-7. PubMed ID: 25622291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes.
    Mylnikov V; Ha ST; Pan Z; Valuckas V; Paniagua-Domínguez R; Demir HV; Kuznetsov AI
    ACS Nano; 2020 Jun; 14(6):7338-7346. PubMed ID: 32459463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic bowtie nanolaser arrays.
    Suh JY; Kim CH; Zhou W; Huntington MD; Co DT; Wasielewski MR; Odom TW
    Nano Lett; 2012 Nov; 12(11):5769-74. PubMed ID: 23013283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.
    Chou YH; Hong KB; Chang CT; Chang TC; Huang ZT; Cheng PJ; Yang JH; Lin MH; Lin TR; Chen KP; Gwo S; Lu TC
    Nano Lett; 2018 Feb; 18(2):747-753. PubMed ID: 29320208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purified plasmonic lasing with strong polarization selectivity by reflection.
    Li G; Liu X; Wang X; Yuan Y; Sum TC; Xiong Q
    Opt Express; 2015 Jun; 23(12):15657-69. PubMed ID: 26193545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Waveguide-Integrated Nanowire Laser.
    Bermúdez-Ureña E; Tutuncuoglu G; Cuerda J; Smith CL; Bravo-Abad J; Bozhevolnyi SI; Fontcuberta I Morral A; García-Vidal FJ; Quidant R
    Nano Lett; 2017 Feb; 17(2):747-754. PubMed ID: 28045536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of an ultrafast plasmonic nanolaser for high-intensity broadband emission operating at room temperature.
    Zhou P; Jin L; Liang K; Liang X; Li J; Deng X; Wang Y; Guo J; Yu L; Zhang J
    Opt Lett; 2024 Jun; 49(11):2930-2933. PubMed ID: 38824295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon lasers at deep subwavelength scale.
    Oulton RF; Sorger VJ; Zentgraf T; Ma RM; Gladden C; Dai L; Bartal G; Zhang X
    Nature; 2009 Oct; 461(7264):629-32. PubMed ID: 19718019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-threshold topological nanolasers based on the second-order corner state.
    Zhang W; Xie X; Hao H; Dang J; Xiao S; Shi S; Ni H; Niu Z; Wang C; Jin K; Zhang X; Xu X
    Light Sci Appl; 2020; 9():109. PubMed ID: 32637076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Localized Surface Plasmon Nanolasers via Strong Coupling.
    Liao JW; Huang ZT; Wu CH; Gagrani N; Tan HH; Jagadish C; Chen KP; Lu TC
    Nano Lett; 2023 May; 23(10):4359-4366. PubMed ID: 37155142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.
    Chou YH; Wu YM; Hong KB; Chou BT; Shih JH; Chung YC; Chen PY; Lin TR; Lin CC; Lin SD; Lu TC
    Nano Lett; 2016 May; 16(5):3179-86. PubMed ID: 27089144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-Beam-Driven III-Nitride Plasmonic Nanolasers in the Deep-UV and Visible Region.
    Tao T; Zhi T; Liu B; Chen P; Xie Z; Zhao H; Ren F; Chen D; Zheng Y; Zhang R
    Small; 2020 Jan; 16(1):e1906205. PubMed ID: 31793750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching of Photonic Crystal Lasers by Graphene.
    Hwang MS; Kim HR; Kim KH; Jeong KY; Park JS; Choi JH; Kang JH; Lee JM; Park WI; Song JH; Seo MK; Park HG
    Nano Lett; 2017 Mar; 17(3):1892-1898. PubMed ID: 28165745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.