These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 32945039)
1. Chemical modifications of tryptophan residues in peptides and proteins. Hu JJ; He PY; Li YM J Pept Sci; 2021 Jan; 27(1):e3286. PubMed ID: 32945039 [TBL] [Abstract][Full Text] [Related]
2. Chemoselective Peptide Modification via Photocatalytic Tryptophan β-Position Conjugation. Yu Y; Zhang LK; Buevich AV; Li G; Tang H; Vachal P; Colletti SL; Shi ZC J Am Chem Soc; 2018 Jun; 140(22):6797-6800. PubMed ID: 29762027 [TBL] [Abstract][Full Text] [Related]
3. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins. Gonnelli M; Strambini GB Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181 [TBL] [Abstract][Full Text] [Related]
4. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Ehrenshaft M; Deterding LJ; Mason RP Free Radic Biol Med; 2015 Dec; 89():220-8. PubMed ID: 26393422 [TBL] [Abstract][Full Text] [Related]
5. Chemo- and Regioselective Ethynylation of Tryptophan-Containing Peptides and Proteins. Hansen MB; Hubálek F; Skrydstrup T; Hoeg-Jensen T Chemistry; 2016 Jan; 22(5):1572-6. PubMed ID: 26634418 [TBL] [Abstract][Full Text] [Related]
6. Late-Stage Chemoenzymatic Installation of Hydroxy-Bearing Allyl Moiety on the Indole Ring of Tryptophan-Containing Peptides. Mupparapu N; Brewster L; Ostrom KF; Elshahawi SI Chemistry; 2022 Apr; 28(20):e202104614. PubMed ID: 35178791 [TBL] [Abstract][Full Text] [Related]
7. Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation. Schöneich C J Pharm Pharmacol; 2018 May; 70(5):655-665. PubMed ID: 28134972 [TBL] [Abstract][Full Text] [Related]
8. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan. Lee JC; Cuthbertson JD; Mitchell NJ Org Lett; 2023 Jul; 25(29):5459-5464. PubMed ID: 37462428 [TBL] [Abstract][Full Text] [Related]
9. Selective Modification of Tryptophan Residues in Peptides and Proteins Using a Biomimetic Electron Transfer Process. Tower SJ; Hetcher WJ; Myers TE; Kuehl NJ; Taylor MT J Am Chem Soc; 2020 May; 142(20):9112-9118. PubMed ID: 32348670 [TBL] [Abstract][Full Text] [Related]
11. Development of indole chemistry to label tryptophan residues in protein for determination of tryptophan surface accessibility. Ladner CL; Turner RJ; Edwards RA Protein Sci; 2007 Jun; 16(6):1204-13. PubMed ID: 17525468 [TBL] [Abstract][Full Text] [Related]
12. Toward intrinsically colored peptides: Synthesis and investigation of the spectral properties of methylated azatryptophans in tryptophan-cage mutants. Noichl BP; Durkin PM; Budisa N Biopolymers; 2015 Sep; 104(5):585-600. PubMed ID: 26250482 [TBL] [Abstract][Full Text] [Related]
13. Tryptophan residues: scarce in proteins but strong stabilizers of β-hairpin peptides. Santiveri CM; Jiménez MA Biopolymers; 2010; 94(6):779-90. PubMed ID: 20564027 [TBL] [Abstract][Full Text] [Related]
14. Interaction of indole derivatives and tryptophan peptides with interfaces of sodium dodecyl sulfate micelles. Imamura T; Konishi K; Konishi K J Pept Sci; 2006 Jun; 12(6):403-11. PubMed ID: 16355438 [TBL] [Abstract][Full Text] [Related]
15. C-H Olefination of Tryptophan Residues in Peptides: Control of Residue Selectivity and Peptide-Amino Acid Cross-linking. Terrey MJ; Holmes A; Perry CC; Cross WB Org Lett; 2019 Oct; 21(19):7902-7907. PubMed ID: 31524401 [TBL] [Abstract][Full Text] [Related]
19. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886 [TBL] [Abstract][Full Text] [Related]