These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32945167)

  • 1. Toward a Quantitative Relationship between Nanoscale Spatial Organization and Hybridization Kinetics of Surface Immobilized Hairpin DNA Probes.
    Gu Q; Cao HH; Zhang Y; Wang H; Petrek ZJ; Shi F; Josephs EA; Ye T
    ACS Sens; 2021 Feb; 6(2):371-379. PubMed ID: 32945167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Effects of Surface Properties and Probe Density for Nanoscale Biosensor Design: A Case Study of DNA Hybridization near Surfaces.
    Cholko T; Chang CA
    J Phys Chem B; 2021 Feb; 125(7):1746-1754. PubMed ID: 33591751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Molecule Profiling of Molecular Recognition at a Model Electrochemical Biosensor.
    Gu Q; Nanney W; Cao HH; Wang H; Ye T
    J Am Chem Soc; 2018 Oct; 140(43):14134-14143. PubMed ID: 30293418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Molecule Fluorescence Imaging of Interfacial DNA Hybridization Kinetics at Selective Capture Surfaces.
    Peterson EM; Manhart MW; Harris JM
    Anal Chem; 2016 Jan; 88(2):1345-54. PubMed ID: 26695617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes.
    Riccelli PV; Merante F; Leung KT; Bortolin S; Zastawny RL; Janeczko R; Benight AS
    Nucleic Acids Res; 2001 Feb; 29(4):996-1004. PubMed ID: 11160933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring molecular beacon DNA probe hybridization at the single-molecule level.
    Yao G; Fang X; Yokota H; Yanagida T; Tan W
    Chemistry; 2003 Nov; 9(22):5686-92. PubMed ID: 14639652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging.
    Peterson EM; Harris JM
    Anal Chem; 2018 Apr; 90(8):5007-5014. PubMed ID: 29577717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biophysics of DNA hybridization with immobilized oligonucleotide probes.
    Chan V; Graves DJ; McKenzie SE
    Biophys J; 1995 Dec; 69(6):2243-55. PubMed ID: 8599632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An insight into the hybridization mechanism of hairpin DNA physically immobilized on chemically modified graphenes.
    Loo AH; Bonanni A; Pumera M
    Analyst; 2013 Jan; 138(2):467-71. PubMed ID: 23172284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor.
    Kjällman TH; Peng H; Soeller C; Travas-Sejdic J
    Anal Chem; 2008 Dec; 80(24):9460-6. PubMed ID: 19006336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybridization dynamics of surface immobilized DNA.
    Hagan MF; Chakraborty AK
    J Chem Phys; 2004 Mar; 120(10):4958-68. PubMed ID: 15267358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and molecular interactions of single-stranded DNA in nucleic acid biosensors with varied surface properties.
    Cholko T; Kaushik S; Chang CA
    Phys Chem Chem Phys; 2019 Aug; 21(29):16367-16380. PubMed ID: 31309941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct detection of DNA conformation in hybridization processes.
    Papadakis G; Tsortos A; Bender F; Ferapontova EE; Gizeli E
    Anal Chem; 2012 Feb; 84(4):1854-61. PubMed ID: 22248021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale spatial distribution of thiolated DNA on model nucleic acid sensor surfaces.
    Josephs EA; Ye T
    ACS Nano; 2013 Apr; 7(4):3653-60. PubMed ID: 23540444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Changes of Mercaptohexanol Self-Assembled Monolayers on Gold and Their Influence on Impedimetric Aptamer Sensors.
    Xu X; Makaraviciute A; Kumar S; Wen C; Sjödin M; Abdurakhmanov E; Danielson UH; Nyholm L; Zhang Z
    Anal Chem; 2019 Nov; 91(22):14697-14704. PubMed ID: 31650834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of surface probe density on DNA hybridization.
    Peterson AW; Heaton RJ; Georgiadis RM
    Nucleic Acids Res; 2001 Dec; 29(24):5163-8. PubMed ID: 11812850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation study of probe-target hybridization in model DNA microarrays: effect of probe surface density and target concentration.
    Jayaraman A; Hall CK; Genzer J
    J Chem Phys; 2007 Oct; 127(14):144912. PubMed ID: 17935444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous Trends in Nucleic Acid-Based Electrochemical Biosensors with Nanoporous Gold Electrodes.
    Veselinovic J; Almashtoub S; Seker E
    Anal Chem; 2019 Sep; 91(18):11923-11931. PubMed ID: 31429540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor.
    Lubin AA; Hunt BV; White RJ; Plaxco KW
    Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanisms in morpholino-DNA surface hybridization.
    Liu Y; Irving D; Qiao W; Ge D; Levicky R
    J Am Chem Soc; 2011 Aug; 133(30):11588-96. PubMed ID: 21699181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.