BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 32945653)

  • 1. The Recent Development of Hybridization Chain Reaction Strategies in Biosensors.
    Zhang C; Chen J; Sun R; Huang Z; Luo Z; Zhou C; Wu M; Duan Y; Li Y
    ACS Sens; 2020 Oct; 5(10):2977-3000. PubMed ID: 32945653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybridization chain reaction and its applications in biosensing.
    Wu J; Lv J; Zheng X; Wu ZS
    Talanta; 2021 Nov; 234():122637. PubMed ID: 34364446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine.
    Bi S; Yue S; Zhang S
    Chem Soc Rev; 2017 Jul; 46(14):4281-4298. PubMed ID: 28573275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific and sensitive detection of CircRNA based on netlike hybridization chain reaction.
    Dong J; Zeng Z; Sun R; Zhang X; Cheng Z; Chen C; Zhu Q
    Biosens Bioelectron; 2021 Nov; 192():113508. PubMed ID: 34284304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in DNA Hybridization Chain Reaction Strategies for Amplified Biosensing.
    Chai H; Cheng W; Jin D; Miao P
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):38931-38946. PubMed ID: 34374513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in the development of DNA-based biosensors integrated with hybridization chain reaction or catalytic hairpin assembly.
    Mo L; He W; Li Z; Liang D; Qin R; Mo M; Yang C; Lin W
    Front Chem; 2023; 11():1134863. PubMed ID: 36874074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear hybridization chain reaction-based functional DNA nanostructure assembly for biosensing, bioimaging applications.
    Zeng Z; Zhou R; Sun R; Zhang X; Cheng Z; Chen C; Zhu Q
    Biosens Bioelectron; 2021 Feb; 173():112814. PubMed ID: 33197767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification.
    Zhou G; Lin M; Song P; Chen X; Chao J; Wang L; Huang Q; Huang W; Fan C; Zuo X
    Anal Chem; 2014 Aug; 86(15):7843-8. PubMed ID: 24989246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traditional and new applications of the HCR in biosensing and biomedicine.
    Zhou R; Zeng Z; Sun R; Liu W; Zhu Q; Zhang X; Chen C
    Analyst; 2021 Nov; 146(23):7087-7103. PubMed ID: 34775502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and Biological Sensing Using Hybridization Chain Reaction.
    Augspurger EE; Rana M; Yigit MV
    ACS Sens; 2018 May; 3(5):878-902. PubMed ID: 29733201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cationic Copolymer-Augmented DNA Hybridization Chain Reaction.
    Wang J; Shimada N; Maruyama A
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39396-39403. PubMed ID: 35975327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically engineered virus-like particle-armoured and multibranched DNA scaffold-corbelled ultra-sensitive hierarchical hybridization chain reaction for targeting-enhanced imaging in living biosystems under spatiotemporal light powering.
    Chen Y; Song Y; Wang X; Tang H; Li C
    Biosens Bioelectron; 2024 Mar; 247():115943. PubMed ID: 38141440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The helper oligonucleotides enable detection of folded single-stranded DNA by lateral flow immunoassay after HCR signal amplification.
    Saisuk W; Suksamai C; Srisawat C; Yoksan S; Dharakul T
    Talanta; 2022 Oct; 248():123588. PubMed ID: 35661000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of hybridization chain reaction optical detection incorporating nanomaterials: A review.
    Li H; Wang X; Wei S; Zhao C; Song X; Xu K; Li J; Pang B; Wang J
    Anal Chim Acta; 2022 Jan; 1190():338930. PubMed ID: 34857127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection.
    Xia N; Cheng J; Tian L; Zhang S; Wang Y; Li G
    Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Application of Hybridization Chain Reaction in the Detection of Foodborne Pathogens.
    Zhao J; Guo Y; Ma X; Liu S; Sun C; Cai M; Chi Y; Xu K
    Foods; 2023 Nov; 12(22):. PubMed ID: 38002125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation.
    Wang X; Lu D; Liu Y; Wang W; Ren R; Li M; Liu D; Liu Y; Liu Y; Pang G
    Biosensors (Basel); 2022 Jul; 12(8):. PubMed ID: 35892464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new photoelectrochemical biosensor for ultrasensitive determination of nucleic acids based on a three-stage cascade signal amplification strategy.
    Xiong E; Yan X; Zhang X; Li Y; Yang R; Meng L; Chen J
    Analyst; 2018 Jun; 143(12):2799-2806. PubMed ID: 29862398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A label-free electrochemical biosensor for microRNAs detection based on DNA nanomaterial by coupling with Y-shaped DNA structure and non-linear hybridization chain reaction.
    Zhou L; Wang Y; Yang C; Xu H; Luo J; Zhang W; Tang X; Yang S; Fu W; Chang K; Chen M
    Biosens Bioelectron; 2019 Feb; 126():657-663. PubMed ID: 30529897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing a Hybrid Chain Reaction Probe for Multiplex Transcripts Assay with High-Level Imaging.
    Cao D; Qin X; Wang W; Zhang Y; Peng S; Gong H; Luo Q; Yang J
    ACS Nano; 2024 Jan; 18(1):618-629. PubMed ID: 38154106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.