BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 32946305)

  • 1. Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models.
    Pariset E; Malkani S; Cekanaviciute E; Costes SV
    Int J Radiat Biol; 2021; 97(sup1):S132-S150. PubMed ID: 32946305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Astrocytes regulate vascular endothelial responses to simulated deep space radiation in a human organ-on-a-chip model.
    Verma SD; Passerat de la Chapelle E; Malkani S; Juran CM; Boyko V; Costes SV; Cekanaviciute E
    Front Immunol; 2022; 13():864923. PubMed ID: 36275678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central Nervous System Responses to Simulated Galactic Cosmic Rays.
    Cekanaviciute E; Rosi S; Costes SV
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures.
    Mishra KN; Moftah BA; Alsbeih GA
    Biomed Pharmacother; 2018 Oct; 106():610-617. PubMed ID: 29990850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.
    Levite M
    J Neural Transm (Vienna); 2014 Aug; 121(8):1029-75. PubMed ID: 25081016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Need for Biological Countermeasures to Mitigate the Risk of Space Radiation-Induced Carcinogenesis, Cardiovascular Disease, and Central Nervous System Deficiencies.
    Sishc BJ; Zawaski J; Saha J; Carnell LS; Fabre KM; Elgart SR
    Life Sci Space Res (Amst); 2022 Nov; 35():4-8. PubMed ID: 36336368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles.
    Baulch JE; Craver BM; Tran KK; Yu L; Chmielewski N; Allen BD; Limoli CL
    Redox Biol; 2015 Aug; 5():24-32. PubMed ID: 25800120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse genomic associations with in vitro sensitivity to simulated space radiation.
    Cekanaviciute E; Tran D; Nguyen H; Lopez Macha A; Pariset E; Langley S; Babbi G; Malkani S; Penninckx S; Schisler JC; Nguyen T; Karpen GH; Costes SV
    Life Sci Space Res (Amst); 2023 Feb; 36():47-58. PubMed ID: 36682829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage.
    Anuranjani ; Bala M
    Redox Biol; 2014; 2():832-46. PubMed ID: 25009785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks.
    Mladenova V; Mladenov E; Stuschke M; Iliakis G
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast.
    Helm JS; Rudel RA
    Arch Toxicol; 2020 May; 94(5):1511-1549. PubMed ID: 32399610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].
    Wideł M; Przybyszewski W; Rzeszowska-Wolny J
    Postepy Hig Med Dosw (Online); 2009 Aug; 63():377-88. PubMed ID: 19724078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species.
    Babu B; Pawar S; Mittal A; Kolanthai E; Neal CJ; Coathup M; Seal S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1896. PubMed ID: 37190884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration.
    Pietrofesa RA; Turowski JB; Arguiri E; Milovanova TN; Solomides CC; Thom SR; Christofidou-Solomidou M
    J Pulm Respir Med; 2013 Sep; 3(5):. PubMed ID: 24358450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifiers of radiation effects in the eye.
    Kleiman NJ; Stewart FA; Hall EJ
    Life Sci Space Res (Amst); 2017 Nov; 15():43-54. PubMed ID: 29198313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation.
    Ashfaq A; Clochard MC; Coqueret X; Dispenza C; Driscoll MS; Ulański P; Al-Sheikhly M
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33266261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation.
    Tseng BP; Giedzinski E; Izadi A; Suarez T; Lan ML; Tran KK; Acharya MM; Nelson GA; Raber J; Parihar VK; Limoli CL
    Antioxid Redox Signal; 2014 Mar; 20(9):1410-22. PubMed ID: 23802883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and biological basis for development of novel radioprotective drugs for cancer therapy.
    Checker R; Patwardhan RS; Jayakumar S; Maurya DK; Bandekar M; Sharma D; Sandur SK
    Free Radic Res; 2021 May; 55(5):595-625. PubMed ID: 34181503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics.
    Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Rezapoor S; Shabeeb D; Musa AE; Najafi M; Villa V
    Clin Transl Oncol; 2018 Aug; 20(8):975-988. PubMed ID: 29318449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotective effects of dietary plants and phytochemicals against radiation-induced cognitive and behavioral deficits: a comprehensive review of evidence and prospects for future research.
    Raghu SV; Kudva AK; Krishnamurthy RG; Mudgal J; George T; Baliga MS
    Food Funct; 2023 Jul; 14(13):5921-5935. PubMed ID: 37350117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.