These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32946435)

  • 1. Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data.
    Kim HJ; Yardımcı GG; Bonora G; Ramani V; Liu J; Qiu R; Lee C; Hesson J; Ware CB; Shendure J; Duan Z; Noble WS
    PLoS Comput Biol; 2020 Sep; 16(9):e1008173. PubMed ID: 32946435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells.
    Ramani V; Deng X; Qiu R; Lee C; Disteche CM; Noble WS; Shendure J; Duan Z
    Methods; 2020 Jan; 170():61-68. PubMed ID: 31536770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Cell Hi-C Analysis Workflow with Pairtools.
    Galitsyna A
    Methods Mol Biol; 2025; 2856():241-262. PubMed ID: 39283456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level.
    Li X; An Z; Zhang Z
    Methods; 2020 Oct; 181-182():52-61. PubMed ID: 31445093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data.
    Yu M; Abnousi A; Zhang Y; Li G; Lee L; Chen Z; Fang R; Lagler TM; Yang Y; Wen J; Sun Q; Li Y; Ren B; Hu M
    Nat Methods; 2021 Sep; 18(9):1056-1059. PubMed ID: 34446921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scHiCTools: A computational toolbox for analyzing single-cell Hi-C data.
    Li X; Feng F; Pu H; Leung WY; Liu J
    PLoS Comput Biol; 2021 May; 17(5):e1008978. PubMed ID: 34003823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised embedding of single-cell Hi-C data.
    Liu J; Lin D; Yardimci GG; Noble WS
    Bioinformatics; 2018 Jul; 34(13):i96-i104. PubMed ID: 29950005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell Hi-C data analysis: safety in numbers.
    Galitsyna AA; Gelfand MS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34406348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast and interpretable single-cell 3D genome analysis with Fast-Higashi.
    Zhang R; Zhou T; Ma J
    Cell Syst; 2022 Oct; 13(10):798-807.e6. PubMed ID: 36265466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iteratively improving Hi-C experiments one step at a time.
    Golloshi R; Sanders JT; McCord RP
    Methods; 2018 Jun; 142():47-58. PubMed ID: 29723572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale and integrative single-cell Hi-C analysis with Higashi.
    Zhang R; Zhou T; Ma J
    Nat Biotechnol; 2022 Feb; 40(2):254-261. PubMed ID: 34635838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Plant 3D Chromatin Architecture, In Situ Hi-C Library Preparation, and Data Analysis.
    Dong P; Zhong S
    Methods Mol Biol; 2020; 2093():147-157. PubMed ID: 32088895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of 3D Chromatin Interactions Using Hi-C.
    Hu G
    Methods Mol Biol; 2020; 2117():65-78. PubMed ID: 31960372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Preparation of Improved Single-Cell Hi-C Libraries Using an Automated Liquid Handling System.
    Leung W; Nagano T
    Methods Mol Biol; 2022; 2532():201-214. PubMed ID: 35867251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FreeHi-C simulates high-fidelity Hi-C data for benchmarking and data augmentation.
    Zheng Y; Keleş S
    Nat Methods; 2020 Jan; 17(1):37-40. PubMed ID: 31712779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell.
    Nagano T; Lubling Y; Yaffe E; Wingett SW; Dean W; Tanay A; Fraser P
    Nat Protoc; 2015 Dec; 10(12):1986-2003. PubMed ID: 26540590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massively multiplex single-cell Hi-C.
    Ramani V; Deng X; Qiu R; Gunderson KL; Steemers FJ; Disteche CM; Noble WS; Duan Z; Shendure J
    Nat Methods; 2017 Mar; 14(3):263-266. PubMed ID: 28135255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scHi-CSim: a flexible simulator that generates high-fidelity single-cell Hi-C data for benchmarking.
    Fan S; Dang D; Ye Y; Zhang SW; Gao L; Zhang S
    J Mol Cell Biol; 2023 Jun; 15(1):. PubMed ID: 36708167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data.
    Hansen P; Gargano M; Hecht J; Ibn-Salem J; Karlebach G; Roehr JT; Robinson PN
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.