These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 32946475)
1. The development of autonomous unmanned aircraft systems for mosquito control. Williams GM; Wang Y; Suman DS; Unlu I; Gaugler R PLoS One; 2020; 15(9):e0235548. PubMed ID: 32946475 [TBL] [Abstract][Full Text] [Related]
2. Toys or Tools? Utilization of Unmanned Aerial Systems in Mosquito and Vector Control Programs. Faraji A; Haas-Stapleton E; Sorensen B; Scholl M; Goodman G; Buettner J; Schon S; Lefkow N; Lewis C; Fritz B; Hoffman C; Williams G J Econ Entomol; 2021 Oct; 114(5):1896-1909. PubMed ID: 34117758 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of ultra-low-volume insecticide dispensing systems for use in single-engined aircraft and their effectiveness against Aedes aegypti populations in South-East Asia. Kilpatrick JW; Tonn RJ; Jatanasen S Bull World Health Organ; 1970; 42(1):1-14. PubMed ID: 5309517 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of aerial spray applications using fuselage booms on Air Force C-130H aircraft against mosquitoes and biting midges. Breidenbaugh MS; Haagsma KA; Wojcik GM; De Szalay FA J Am Mosq Control Assoc; 2009 Dec; 25(4):467-73. PubMed ID: 20099594 [TBL] [Abstract][Full Text] [Related]
5. Equipping a multi-engined aircraft with a fuselage-mounted spray system for the ultra-low-volume application of malathion. Lofgren CS; Ford HR; Tonn RJ; Jatanasen S Bull World Health Organ; 1970; 42(1):157-63. PubMed ID: 4392343 [No Abstract] [Full Text] [Related]
6. Retention and efficacy of ultra-low volume pesticide applications on Culex quinquefasciatus (Diptera: Culicidae). Zhang H; Dorr GJ; Hewitt AJ Environ Sci Pollut Res Int; 2015 Nov; 22(21):16492-501. PubMed ID: 26423287 [TBL] [Abstract][Full Text] [Related]
7. A review of ultralow-volume aerial sprays of insecticide for mosquito control. Mount GA; Biery TL; Haile DG J Am Mosq Control Assoc; 1996 Dec; 12(4):601-18. PubMed ID: 9046465 [TBL] [Abstract][Full Text] [Related]
8. Assessing Mosquito Breeding Sites and Abundance Using An Unmanned Aircraft. Haas-Stapleton EJ; Barretto MC; Castillo EB; Clausnitzer RJ; Ferdan RL J Am Mosq Control Assoc; 2019 Sep; 35(3):228-232. PubMed ID: 31647712 [TBL] [Abstract][Full Text] [Related]
9. The impact of Aerial applications of ultra-low volume adulticides on Culex tarsalis populations (Diptera: Culicidae) in Kern County, California, USA, 1982. Reisen WK; Yoshimura G; Reeves WC; Milby MM; Meyer RP J Med Entomol; 1984 Sep; 21(5):573-85. PubMed ID: 6209396 [No Abstract] [Full Text] [Related]
10. Uncrewed Aerial Spray Systems For Mosquito Control: Efficacy Studies For Space Sprays. Bonds JAS; Fritz BK; Thistle H; Tressler M; Wheeler SS; Harshaw R; Reynolds B; Kimbell P J Am Mosq Control Assoc; 2023 Dec; 39(4):223-230. PubMed ID: 38108430 [TBL] [Abstract][Full Text] [Related]
11. [Effectiveness of aerial application of VectoBac G larvicide granules against mosquitoes in the Olomouc region in spring 2006]. Chmela J; Mazánek L; Nakládal Z; Pesáková L; Halirová R Epidemiol Mikrobiol Imunol; 2007 Apr; 56(2):78-87. PubMed ID: 17593805 [TBL] [Abstract][Full Text] [Related]
12. The Eye of the Tiger, the Thrill of the Fight: Effective Larval and Adult Control Measures Against the Asian Tiger Mosquito, Aedes albopictus (Diptera: Culicidae), in North America. Faraji A; Unlu I J Med Entomol; 2016 Sep; 53(5):1029-47. PubMed ID: 27354440 [TBL] [Abstract][Full Text] [Related]
13. Aerial adulticiding for the suppression of Culex tarsalis in Kern County, California, using low-volume propoxur: 1. Selection and evaluation of the application system. Schaefer CH; Clement HL; Reisen WK; Mulligan FS; Parman RB; Wilder WH J Am Mosq Control Assoc; 1985 Jun; 1(2):148-53. PubMed ID: 3880225 [TBL] [Abstract][Full Text] [Related]
14. Standardized Operational Evaluations of Catch Basin Larvicides from Seven Mosquito Control Programs in the Midwestern United States During 2017. Harbison JE; Nasci R; Runde A; Henry M; Binnall J; Hulsebosch B; Rutkowski N; Johnson H; Uelmen J; Bradley M; Newton G; Irwin P; Bartlett D; Ruiz MO J Am Mosq Control Assoc; 2018 Jun; 34(2):107-116. PubMed ID: 31442163 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a new ultra-low volume fuselage spray configuration on Air Force C-130H airplane used for adult mosquito control. Breidenbaugh M; Haagsma K; Latham M; de Szalay F US Army Med Dep J; 2009; ():66-76. PubMed ID: 20084739 [TBL] [Abstract][Full Text] [Related]
17. Optimizing an aerial spray for mosquito control. Brown JR; Mickle RE; Yates M; Zhai J J Am Mosq Control Assoc; 2003 Sep; 19(3):243-50. PubMed ID: 14524546 [TBL] [Abstract][Full Text] [Related]
18. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
19. Laser-diffraction characterization of flat-fan nozzles used to develop aerosol clouds of aerially applied mosquito adulticides. Hornby JA; Robinson J; Opp W; Sterling M J Am Mosq Control Assoc; 2006 Dec; 22(4):702-6. PubMed ID: 17304940 [TBL] [Abstract][Full Text] [Related]
20. Quality assurance of aerial applications of larvicides for mosquito control: effects of granule and catch tray size on field monitoring programs. Russell TL; Gatron ML; Ryan PA; Kay BH J Econ Entomol; 2009 Apr; 102(2):507-14. PubMed ID: 19449629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]