These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32946529)

  • 1. Short k-mer abundance profiles yield robust machine learning features and accurate classifiers for RNA viruses.
    Alam MNU; Chowdhury UF
    PLoS One; 2020; 15(9):e0239381. PubMed ID: 32946529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data.
    Ren J; Ahlgren NA; Lu YY; Fuhrman JA; Sun F
    Microbiome; 2017 Jul; 5(1):69. PubMed ID: 28683828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmer: an Accurate and Sensitive Bacterial Plasmid Prediction Tool Based on Machine Learning of Shared k-mers and Genomic Features.
    Zhu Q; Gao S; Xiao B; He Z; Hu S
    Microbiol Spectr; 2023 Jun; 11(3):e0464522. PubMed ID: 37191574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut.
    Vázquez-Castellanos JF; García-López R; Pérez-Brocal V; Pignatelli M; Moya A
    BMC Genomics; 2014 Jan; 15():37. PubMed ID: 24438450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples.
    Tampuu A; Bzhalava Z; Dillner J; Vicente R
    PLoS One; 2019; 14(9):e0222271. PubMed ID: 31509583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profile hidden Markov models for the detection of viruses within metagenomic sequence data.
    Skewes-Cox P; Sharpton TJ; Pollard KS; DeRisi JL
    PLoS One; 2014; 9(8):e105067. PubMed ID: 25140992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting host taxonomic information from viral genomes: A comparison of feature representations.
    Young F; Rogers S; Robertson DL
    PLoS Comput Biol; 2020 May; 16(5):e1007894. PubMed ID: 32453718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A binning tool to reconstruct viral haplotypes from assembled contigs.
    Chen J; Shang J; Wang J; Sun Y
    BMC Bioinformatics; 2019 Nov; 20(1):544. PubMed ID: 31684876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme.
    Li A; Zhang J; Zhou Z
    BMC Bioinformatics; 2014 Sep; 15(1):311. PubMed ID: 25239089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cataloguing the taxonomic origins of sequences from a heterogeneous sample using phylogenomics: applications in adventitious agent detection.
    Charlebois RL; Ng SH; Gisonni-Lex L; Mallet L
    PDA J Pharm Sci Technol; 2014; 68(6):602-18. PubMed ID: 25475635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning for detection of viral sequences in human metagenomic datasets.
    Bzhalava Z; Tampuu A; Bała P; Vicente R; Dillner J
    BMC Bioinformatics; 2018 Sep; 19(1):336. PubMed ID: 30249176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. drVM: a new tool for efficient genome assembly of known eukaryotic viruses from metagenomes.
    Lin HH; Liao YC
    Gigascience; 2017 Feb; 6(2):1-10. PubMed ID: 28369462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing.
    Parker MT; Knop K; Barton GJ; Simpson GG
    Genome Biol; 2021 Mar; 22(1):72. PubMed ID: 33648554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CARE 2.0: reducing false-positive sequencing error corrections using machine learning.
    Kallenborn F; Cascitti J; Schmidt B
    BMC Bioinformatics; 2022 Jun; 23(1):227. PubMed ID: 35698033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPM4GAC: SPM based approach for genome analysis and classification of macromolecules.
    Nawaz MS; Fournier-Viger P; Nawaz S; Zhu H; Yun U
    Int J Biol Macromol; 2024 May; 266(Pt 2):130984. PubMed ID: 38513910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning approach for viral genome classification.
    Remita MA; Halioui A; Malick Diouara AA; Daigle B; Kiani G; Diallo AB
    BMC Bioinformatics; 2017 Apr; 18(1):208. PubMed ID: 28399797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MetaMLP: A Fast Word Embedding Based Classifier to Profile Target Gene Databases in Metagenomic Samples.
    Arango-Argoty GA; Heath LS; Pruden A; Vikesland PJ; Zhang L
    J Comput Biol; 2021 Nov; 28(11):1063-1074. PubMed ID: 34665648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correcting the Estimation of Viral Taxa Distributions in Next-Generation Sequencing Data after Applying Artificial Neural Networks.
    Kohls M; Kircher M; Krepel J; Liebig P; Jung K
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of machine learning in understanding plant virus pathogenesis: trends and perspectives on emergence, diagnosis, host-virus interplay and management.
    Ghosh D; Chakraborty S; Kodamana H; Chakraborty S
    Virol J; 2022 Mar; 19(1):42. PubMed ID: 35264189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.