These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32946713)

  • 1. Repetitive Control for Multi-Joint Arm Movements Based on Virtual Trajectories.
    Uno Y; Suzuki T; Kagawa T
    Neural Comput; 2020 Nov; 32(11):2212-2236. PubMed ID: 32946713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models.
    Katayama M; Kawato M
    Biol Cybern; 1993; 69(5-6):353-62. PubMed ID: 8274536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory.
    Wada Y; Kaneko Y; Nakano E; Osu R; Kawato M
    Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of hand equilibrium trajectories in multi-joint arm movements.
    Flash T
    Biol Cybern; 1987; 57(4-5):257-74. PubMed ID: 3689835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding Imagined 3D Arm Movement Trajectories From EEG to Control Two Virtual Arms-A Pilot Study.
    Korik A; Sosnik R; Siddique N; Coyle D
    Front Neurorobot; 2019; 13():94. PubMed ID: 31798438
    [No Abstract]   [Full Text] [Related]  

  • 6. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.
    Wolpert DM; Ghahramani Z; Jordan MI
    Exp Brain Res; 1995; 103(3):460-70. PubMed ID: 7789452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal control of antagonistic muscle stiffness during voluntary movements.
    Lan N; Crago PE
    Biol Cybern; 1994; 71(2):123-35. PubMed ID: 8068774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are complex control signals required for human arm movement?
    Gribble PL; Ostry DJ; Sanguineti V; Laboissière R
    J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability properties of human reaching movements.
    Won J; Hogan N
    Exp Brain Res; 1995; 107(1):125-36. PubMed ID: 8751070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network.
    Dornay M; Sanger TD
    Biol Cybern; 1993; 68(6):499-508. PubMed ID: 8324058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control.
    Schweighofer N; Arbib MA; Kawato M
    Eur J Neurosci; 1998 Jan; 10(1):86-94. PubMed ID: 9753116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational model of motor learning and perceptual change.
    Ito S; Darainy M; Sasaki M; Ostry DJ
    Biol Cybern; 2013 Dec; 107(6):653-67. PubMed ID: 23989535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the possibility of linear modelling the human arm neuromuscular apparatus.
    Frolov AA; Dufossé M; Rízek S; Kaladjian A
    Biol Cybern; 2000 Jun; 82(6):499-515. PubMed ID: 10879434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational reproductions of external force field adaption without assuming desired trajectories.
    Kambara H; Takagi A; Shimizu H; Kawase T; Yoshimura N; Schweighofer N; Koike Y
    Neural Netw; 2021 Jul; 139():179-198. PubMed ID: 33740581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectory formation based on physiological characteristics of skeletal muscles.
    Kashima T; Isurugi Y
    Biol Cybern; 1998 Jun; 78(6):413-22. PubMed ID: 9711815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.