These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 32946895)
1. Comparison of Strategies in Development and Manufacturing of Low Viscosity, Ultra-High Concentration Formulation for IgG1 Antibody. Deokar V; Sharma A; Mody R; Volety SM J Pharm Sci; 2020 Dec; 109(12):3579-3589. PubMed ID: 32946895 [TBL] [Abstract][Full Text] [Related]
2. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale. Gikanga B; Turok R; Hui A; Bowen M; Stauch OB; Maa YF PDA J Pharm Sci Technol; 2015; 69(1):59-73. PubMed ID: 25691715 [TBL] [Abstract][Full Text] [Related]
3. Formulating monoclonal antibodies as powders for reconstitution at high concentration using spray-drying: Trehalose/amino acid combinations as reconstitution time reducing and stability improving formulations. Massant J; Fleurime S; Batens M; Vanhaerents H; Van den Mooter G Eur J Pharm Biopharm; 2020 Nov; 156():131-142. PubMed ID: 32882422 [TBL] [Abstract][Full Text] [Related]
4. Drying-induced variations in physico-chemical properties of amorphous pharmaceuticals and their impact on stability (I): stability of a monoclonal antibody. Abdul-Fattah AM; Truong-Le V; Yee L; Nguyen L; Kalonia DS; Cicerone MT; Pikal MJ J Pharm Sci; 2007 Aug; 96(8):1983-2008. PubMed ID: 17286290 [TBL] [Abstract][Full Text] [Related]
5. High concentration formulation feasibility of human immunoglubulin G for subcutaneous administration. Dani B; Platz R; Tzannis ST J Pharm Sci; 2007 Jun; 96(6):1504-17. PubMed ID: 17387698 [TBL] [Abstract][Full Text] [Related]
6. Stabilization of IgG1 in spray-dried powders for inhalation. Schüle S; Schulz-Fademrecht T; Garidel P; Bechtold-Peters K; Frieb W Eur J Pharm Biopharm; 2008 Aug; 69(3):793-807. PubMed ID: 18477504 [TBL] [Abstract][Full Text] [Related]
7. Challenges and solutions to manufacturing of low viscosity, ultra-high concentration IgG1 drug products: From late downstream process to final fill finish processing. Deokar VD; Sharma A; Subrahmanyam VM PDA J Pharm Sci Technol; 2024 Jun; ():. PubMed ID: 38942482 [TBL] [Abstract][Full Text] [Related]
8. Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations. Schüle S; Friess W; Bechtold-Peters K; Garidel P Eur J Pharm Biopharm; 2007 Jan; 65(1):1-9. PubMed ID: 17034996 [TBL] [Abstract][Full Text] [Related]
9. Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. Maa YF; Ameri M; Shu C; Payne LG; Chen D J Pharm Sci; 2004 Jul; 93(7):1912-23. PubMed ID: 15176078 [TBL] [Abstract][Full Text] [Related]
10. Formulating monoclonal antibodies as powders for reconstitution at high concentration using spray drying: Models and pitfalls. Batens M; Massant J; Teodorescu B; Van den Mooter G Eur J Pharm Biopharm; 2018 Jun; 127():407-422. PubMed ID: 29499299 [TBL] [Abstract][Full Text] [Related]
12. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. Saluja V; Amorij JP; Kapteyn JC; de Boer AH; Frijlink HW; Hinrichs WL J Control Release; 2010 Jun; 144(2):127-33. PubMed ID: 20219608 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of alum-adjuvanted vaccine dry powder formulations: mechanism and application. Maa YF; Zhao L; Payne LG; Chen D J Pharm Sci; 2003 Feb; 92(2):319-32. PubMed ID: 12532382 [TBL] [Abstract][Full Text] [Related]
14. The impact of drying method and formulation on the physical properties and stability of methionyl human growth hormone in the amorphous solid state. Abdul-Fattah AM; Lechuga-Ballesteros D; Kalonia DS; Pikal MJ J Pharm Sci; 2008 Jan; 97(1):163-84. PubMed ID: 17722086 [TBL] [Abstract][Full Text] [Related]
15. Stability Studies of a Freeze-Dried Recombinant Human Epidermal Growth Factor Formulation for Wound Healing. Santana H; García G; Vega M; Beldarraín A; Páez R PDA J Pharm Sci Technol; 2015; 69(3):399-416. PubMed ID: 26048746 [TBL] [Abstract][Full Text] [Related]
16. Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders. Wanning S; Süverkrüp R; Lamprecht A Int J Pharm; 2020 Aug; 586():119564. PubMed ID: 32590097 [TBL] [Abstract][Full Text] [Related]
17. How spray drying processing and solution composition can affect the mAbs stability in reconstituted solutions for subcutaneous injections. Part II: Exploring each protein stabilizer effect. Barcelo-Chong CM; Filipe V; Nakach M; Inês Ré M Int J Pharm; 2024 Apr; 655():124014. PubMed ID: 38513817 [TBL] [Abstract][Full Text] [Related]
18. Spray-Freeze Drying: a Suitable Method for Aerosol Delivery of Antibodies in the Presence of Trehalose and Cyclodextrins. Pouya MA; Daneshmand B; Aghababaie S; Faghihi H; Vatanara A AAPS PharmSciTech; 2018 Jul; 19(5):2247-2254. PubMed ID: 29740758 [TBL] [Abstract][Full Text] [Related]
19. Powder suspensions in non-aqueous vehicles for delivery of therapeutic proteins. Marschall C; Witt M; Hauptmeier B; Friess W Eur J Pharm Biopharm; 2021 Apr; 161():37-49. PubMed ID: 33548460 [TBL] [Abstract][Full Text] [Related]
20. How spray drying processing and solution composition can affect the mAbs stability in reconstituted solutions for subcutaneous injections. Part I: Contribution of processing stresses against composition. Barceló-Chong CM; Filipe V; Nakach M; Ré MI Int J Pharm; 2024 Apr; 655():123925. PubMed ID: 38518870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]