These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32947125)

  • 1. Breaking Free from Cobalt Reliance in Lithium-Ion Batteries.
    Gourley SWD; Or T; Chen Z
    iScience; 2020 Sep; 23(9):101505. PubMed ID: 32947125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circularity of Lithium-Ion Battery Materials in Electric Vehicles.
    Dunn J; Slattery M; Kendall A; Ambrose H; Shen S
    Environ Sci Technol; 2021 Apr; 55(8):5189-5198. PubMed ID: 33764763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles.
    Shafique M; Akbar A; Rafiq M; Azam A; Luo X
    Waste Manag Res; 2023 Feb; 41(2):376-388. PubMed ID: 36373335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances on low-Co and Co-free high entropy layered oxide cathodes for lithium-ion batteries.
    Yu B; Wang Y; Li J; Jin Y; Liang Z; Zhou L; Chen M
    Nanotechnology; 2023 Aug; 34(45):. PubMed ID: 37527639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced cobalt-free cathode materials for sodium-ion batteries.
    Chu S; Guo S; Zhou H
    Chem Soc Rev; 2021 Nov; 50(23):13189-13235. PubMed ID: 34719701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles.
    Xiong S; Ji J; Ma X
    Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Co-Free Ni-Rich LiNi
    Xi Y; Wang M; Xu L; Kheimeh Sari HM; Li W; Hu J; Cao Y; Chen L; Wang L; Pu X; Wang J; Bai Y; Liu X; Li X
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57341-57349. PubMed ID: 34806873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of global power lithium-ion batteries and associated critical metal recycling.
    Miao Y; Liu L; Zhang Y; Tan Q; Li J
    J Hazard Mater; 2022 Mar; 425():127900. PubMed ID: 34896721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary Effects of Mg and Cu Incorporation in Stabilizing the Cobalt-Free LiNiO
    Seong WM; Manthiram A
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43653-43664. PubMed ID: 32869966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries.
    Hameed AS; Reddy MV; Nagarathinam M; Runčevski T; Dinnebier RE; Adams S; Chowdari BV; Vittal JJ
    Sci Rep; 2015 Nov; 5():16270. PubMed ID: 26593096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies.
    Windisch-Kern S; Gerold E; Nigl T; Jandric A; Altendorfer M; Rutrecht B; Scherhaufer S; Raupenstrauch H; Pomberger R; Antrekowitsch H; Part F
    Waste Manag; 2022 Feb; 138():125-139. PubMed ID: 34875455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Critical Review on the Recycling Strategy of Lithium Iron Phosphate from Electric Vehicles.
    Zhang M; Wang L; Wang S; Ma T; Jia F; Zhan C
    Small Methods; 2023 Jul; 7(7):e2300125. PubMed ID: 37086120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives.
    Hantanasirisakul K; Sawangphruk M
    Glob Chall; 2023 Apr; 7(4):2200212. PubMed ID: 37020621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh Rate Performance of a Robust Lithium Nickel Manganese Cobalt Oxide Cathode with Preferentially Orientated Li-Diffusing Channels.
    Ren D; Padgett E; Yang Y; Shen L; Shen Y; Levin BDA; Yu Y; DiSalvo FJ; Muller DA; Abruña HD
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41178-41187. PubMed ID: 31600433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry.
    Wang S; Yu J
    Waste Manag Res; 2021 Jun; 39(6):818-827. PubMed ID: 32883186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Cathode Material Synthesis and Thermal Characterization of (1-x-y) LiCo
    Li L; Min X; Monajjemi M
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies towards Low-Cost Dual-Ion Batteries with High Performance.
    Zhou X; Liu Q; Jiang C; Ji B; Ji X; Tang Y; Cheng HM
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):3802-3832. PubMed ID: 30865353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.