These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32947708)
21. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil. Gonzaga MIS; Mackowiak C; Quintão de Almeida A; Wisniewski A; Figueiredo de Souza D; da Silva Lima I; Nascimento de Jesus A Chemosphere; 2018 Jun; 201():278-285. PubMed ID: 29525655 [TBL] [Abstract][Full Text] [Related]
22. Mechanisms for 1,3-Dichloropropene Dissipation in Biochar-Amended Soils. Wang Q; Gao S; Wang D; Spokas K; Cao A; Yan D J Agric Food Chem; 2016 Mar; 64(12):2531-40. PubMed ID: 26954066 [TBL] [Abstract][Full Text] [Related]
23. Toxicity of dimethoate to some soil animal species in different soil types. Martikainen E Ecotoxicol Environ Saf; 1996 Mar; 33(2):128-36. PubMed ID: 8723749 [TBL] [Abstract][Full Text] [Related]
24. Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios. Leitão S; Moreira-Santos M; Van den Brink PJ; Ribeiro R; José Cerejeira M; Sousa JP Ecotoxicol Environ Saf; 2014 May; 103():36-44. PubMed ID: 24562181 [TBL] [Abstract][Full Text] [Related]
25. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699 [TBL] [Abstract][Full Text] [Related]
26. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil. Stefaniuk M; Oleszczuk P Environ Pollut; 2016 Nov; 218():242-251. PubMed ID: 27461750 [TBL] [Abstract][Full Text] [Related]
27. Risk assessment of low-temperature biochar used as soil amendment on soil mesofauna. Gruss I; Twardowski JP; Latawiec A; Medyńska-Juraszek A; Królczyk J Environ Sci Pollut Res Int; 2019 Jun; 26(18):18230-18239. PubMed ID: 31041701 [TBL] [Abstract][Full Text] [Related]
28. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. He L; Zhong H; Liu G; Dai Z; Brookes PC; Xu J Environ Pollut; 2019 Sep; 252(Pt A):846-855. PubMed ID: 31202137 [TBL] [Abstract][Full Text] [Related]
29. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Puga AP; Abreu CA; Melo LC; Paz-Ferreiro J; Beesley L Environ Sci Pollut Res Int; 2015 Nov; 22(22):17606-14. PubMed ID: 26146374 [TBL] [Abstract][Full Text] [Related]
30. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. Sabir A; Naveed M; Bashir MA; Hussain A; Mustafa A; Zahir ZA; Kamran M; Ditta A; Núñez-Delgado A; Saeed Q; Qadeer A J Environ Manage; 2020 Jul; 265():110522. PubMed ID: 32275244 [TBL] [Abstract][Full Text] [Related]
31. Polycyclic aromatic hydrocarbons (PAHs) persistence, bioavailability and toxicity in sewage sludge- or sewage sludge-derived biochar-amended soil. Tomczyk B; Siatecka A; Jędruchniewicz K; Sochacka A; Bogusz A; Oleszczuk P Sci Total Environ; 2020 Dec; 747():141123. PubMed ID: 32795789 [TBL] [Abstract][Full Text] [Related]
32. Biochar from sewage sludge and pruning trees reduced porewater Cd, Pb and Zn concentrations in acidic, but not basic, mine soils under hydric conditions. Álvarez-Rogel J; Tercero Gómez MDC; Conesa HM; Párraga-Aguado I; González-Alcaraz MN J Environ Manage; 2018 Oct; 223():554-565. PubMed ID: 29960192 [TBL] [Abstract][Full Text] [Related]
33. Effect of aging in field soil on biochar's properties and its sorption capacity. Ren X; Sun H; Wang F; Zhang P; Zhu H Environ Pollut; 2018 Nov; 242(Pt B):1880-1886. PubMed ID: 30061080 [TBL] [Abstract][Full Text] [Related]
34. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability. Li L; Zhu C; Liu X; Li F; Li H; Ye J Environ Sci Pollut Res Int; 2018 Dec; 25(34):34091-34102. PubMed ID: 30284163 [TBL] [Abstract][Full Text] [Related]
35. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Shetty R; Vidya CS; Prakash NB; Lux A; Vaculík M Sci Total Environ; 2021 Apr; 765():142744. PubMed ID: 33092837 [TBL] [Abstract][Full Text] [Related]
36. Mobilization or immobilization? The effect of HDTMA-modified biochar on As mobility and bioavailability in soil. Yan C; Wen J; Wang Q; Xing L; Hu X Ecotoxicol Environ Saf; 2021 Jan; 207():111565. PubMed ID: 33254418 [TBL] [Abstract][Full Text] [Related]
37. Extrapolation of imidacloprid toxicity between soils by exposing Folsomia candida in soil pore water. Ogungbemi AO; van Gestel CAM Ecotoxicology; 2018 Oct; 27(8):1107-1115. PubMed ID: 30062627 [TBL] [Abstract][Full Text] [Related]
38. Earthworm activities weaken the immobilizing effect of biochar as amendment for metal polluted soils. Wang J; Shi L; Zhang X; Zhao X; Zhong K; Wang S; Zou J; Shen Z; Chen Y Sci Total Environ; 2019 Dec; 696():133729. PubMed ID: 31450052 [TBL] [Abstract][Full Text] [Related]
39. The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L. Zheng R; Li C; Sun G; Xie Z; Chen J; Wu J; Wang Q Environ Sci Pollut Res Int; 2017 Oct; 24(28):22340-22352. PubMed ID: 28801768 [TBL] [Abstract][Full Text] [Related]