BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 32947735)

  • 1. A review on phytoremediation of mercury contaminated soils.
    Liu Z; Chen B; Wang LA; Urbanovich O; Nagorskaya L; Li X; Tang L
    J Hazard Mater; 2020 Dec; 400():123138. PubMed ID: 32947735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives.
    Tiodar ED; Văcar CL; Podar D
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33801363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L.
    Liu Z; Wang LA; Ding S; Xiao H
    Ecotoxicol Environ Saf; 2018 Sep; 160():171-177. PubMed ID: 29804013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils.
    Saldarriaga JF; López JE; Díaz-García L; Montoya-Ruiz C
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):49498-49511. PubMed ID: 36781665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.
    Marrugo-Negrete J; Marrugo-Madrid S; Pinedo-Hernández J; Durango-Hernández J; Díez S
    Sci Total Environ; 2016 Jan; 542(Pt A):809-16. PubMed ID: 26556744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships.
    Feng NX; Yu J; Zhao HM; Cheng YT; Mo CH; Cai QY; Li YW; Li H; Wong MH
    Sci Total Environ; 2017 Apr; 583():352-368. PubMed ID: 28117167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.
    Wang J; Xia J; Feng X
    J Environ Manage; 2017 Jan; 186(Pt 2):233-239. PubMed ID: 27217079
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Alves de Oliveira E; Cavalheiro da Silva L; Antônio de Andrade E; Dênis Battirola L; Lopes Tortorela de Andrade R
    Int J Phytoremediation; 2024 May; 26(7):1076-1086. PubMed ID: 38059299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of mercury-contaminated soils by Jatropha curcas.
    Marrugo-Negrete J; Durango-Hernández J; Pinedo-Hernández J; Olivero-Verbel J; Díez S
    Chemosphere; 2015 May; 127():58-63. PubMed ID: 25655698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erato polymnioides - A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation.
    Chamba I; Rosado D; Kalinhoff C; Thangaswamy S; Sánchez-Rodríguez A; Gazquez MJ
    Chemosphere; 2017 Dec; 188():633-641. PubMed ID: 28918247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil.
    Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene.
    Gabriele I; Race M; Papirio S; Esposito G
    J Environ Manage; 2021 Sep; 293():112805. PubMed ID: 34051532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites.
    Nurzhanova A; Pidlisnyuk V; Abit K; Nurzhanov C; Kenessov B; Stefanovska T; Erickson L
    Environ Sci Pollut Res Int; 2019 May; 26(13):13320-13333. PubMed ID: 30903469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.
    Rodriguez L; Rincón J; Asencio I; Rodríguez-Castellanos L
    Int J Phytoremediation; 2007; 9(1):1-13. PubMed ID: 18246711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals.
    Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M
    Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation and its models for organic contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2003 May; 15(3):302-10. PubMed ID: 12938977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviors of cadmium in rhizosphere soils and its interaction with microbiome communities in phytoremediation.
    Niu H; Leng Y; Li X; Yu Q; Wu H; Gong J; Li H; Chen K
    Chemosphere; 2021 Apr; 269():128765. PubMed ID: 33143888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic.
    Wu B; Luo S; Luo H; Huang H; Xu F; Feng S; Xu H
    Sci Total Environ; 2022 Feb; 808():151995. PubMed ID: 34856269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.
    Smolinska B
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3528-37. PubMed ID: 25245260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.