BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 32948190)

  • 1. Genome scale analysis of pathogenic variants targetable for single base editing.
    Lavrov AV; Varenikov GG; Skoblov MY
    BMC Med Genomics; 2020 Sep; 13(Suppl 8):80. PubMed ID: 32948190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs.
    Huang TP; Heins ZJ; Miller SM; Wong BG; Balivada PA; Wang T; Khalil AS; Liu DR
    Nat Biotechnol; 2023 Jan; 41(1):96-107. PubMed ID: 36076084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction.
    Huang C; Li G; Wu J; Liang J; Wang X
    Genome Biol; 2021 Mar; 22(1):80. PubMed ID: 33691754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning.
    Arbab M; Shen MW; Mok B; Wilson C; Matuszek Ż; Cassa CA; Liu DR
    Cell; 2020 Jul; 182(2):463-480.e30. PubMed ID: 32533916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base editing: advances and therapeutic opportunities.
    Porto EM; Komor AC; Slaymaker IM; Yeo GW
    Nat Rev Drug Discov; 2020 Dec; 19(12):839-859. PubMed ID: 33077937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obtaining the best igRNAs for bystander-less correction of all ABE-reversible pathogenic SNVs using high-throughput screening.
    Li B; Zhao D; Li Y; Yang Y; Zhu X; Li J; Bi C; Zhang X
    Mol Ther; 2023 Apr; 31(4):1167-1176. PubMed ID: 36733252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In the business of base editors: Evolution from bench to bedside.
    Porto EM; Komor AC
    PLoS Biol; 2023 Apr; 21(4):e3002071. PubMed ID: 37043430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a universal antibiotic resistance screening system for efficient enrichment of C-to-G and A-to-G base editing.
    Xin Y; Feng H; He C; Lu H; Zuo E; Yan N
    Int J Biol Macromol; 2024 May; 268(Pt 2):131785. PubMed ID: 38679258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlPaCas: allele-specific CRISPR gene editing through a protospacer-adjacent-motif (PAM) approach.
    Rosignoli S; Lustrino E; Conci A; Fabrizi A; Rinaldo S; Latella MC; Enzo E; Prosseda G; De Rosa L; De Luca M; Paiardini A
    Nucleic Acids Res; 2024 May; ():. PubMed ID: 38795068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crispr-Based Editing of Human Pluripotent Stem Cells for Disease Modeling.
    Chang Y; Lan F; Zhang Y; Ma S
    Stem Cell Rev Rep; 2024 Apr; ():. PubMed ID: 38564139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional Variation in Cardiovascular Genes Enables a Tractable Genome Editing Strategy.
    Krysov VA; Wilson RH; Ten NS; Youlton N; De Jong HN; Sutton S; Huang Y; Reuter CM; Grove ME; Wheeler MT; Ashley EA; Parikh VN
    Circ Genom Precis Med; 2024 Apr; 17(2):e004370. PubMed ID: 38506054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base Editors-Mediated Gene Therapy in Hematopoietic Stem Cells for Hematologic Diseases.
    Zhang C; Xu J; Wu Y; Xu C; Xu P
    Stem Cell Rev Rep; 2024 Apr; ():. PubMed ID: 38644403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CHANGE-seq-BE enables simultaneously sensitive and unbiased
    Lazzarotto CR; Katta V; Li Y; Urbina E; Lee G; Tsai SQ
    bioRxiv; 2024 Mar; ():. PubMed ID: 38585919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing accurate mitochondrial DNA base editing mediated by DdCBEs in a predictable manner.
    Qiu J; Wu H; Xie Q; Zhou Y; Gao Y; Liu J; Jiang X; Suo L; Kuang Y
    Front Bioeng Biotechnol; 2024; 12():1372211. PubMed ID: 38655388
    [No Abstract]   [Full Text] [Related]  

  • 15. Base editors dissect genetic variants in human hematopoietic cells on a large scale.
    Papapetrou EP
    Trends Immunol; 2023 Jul; 44(7):490-492. PubMed ID: 37316391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alphamissense Predictive of Pathogenic Protein Variants.
    Am J Med Genet A; 2024 May; 194(5):e63268. PubMed ID: 38593366
    [No Abstract]   [Full Text] [Related]  

  • 17. DNA and RNA base editors can correct the majority of pathogenic single nucleotide variants.
    Dadush A; Merdler-Rabinowicz R; Gorelik D; Feiglin A; Buchumenski I; Pal LR; Ben-Aroya S; Ruppin E; Levanon EY
    NPJ Genom Med; 2024 Feb; 9(1):16. PubMed ID: 38409211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient high-precision homology-directed repair-dependent genome editing by HDRobust.
    Riesenberg S; Kanis P; Macak D; Wollny D; Düsterhöft D; Kowalewski J; Helmbrecht N; Maricic T; Pääbo S
    Nat Methods; 2023 Sep; 20(9):1388-1399. PubMed ID: 37474806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment strategies to enhance genome editing.
    Mikkelsen NS; Bak RO
    J Biomed Sci; 2023 Jul; 30(1):51. PubMed ID: 37393268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical genomics at the Systems Biology and Bioinformatics (SBB-2019) school.
    Orlov YL; Voropaeva EN; Chen M; Baranova AV
    BMC Med Genomics; 2020 Sep; 13(Suppl 8):127. PubMed ID: 32948185
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.