BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32948273)

  • 1. Strong preference for the integration of transforming DNA via homologous recombination in Trichoderma atroviride.
    Esquivel-Naranjo EU; Herrera-Estrella A
    Fungal Biol; 2020 Oct; 124(10):854-863. PubMed ID: 32948273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Trichoderma atroviride mutants with constitutively activated G protein signaling by using geneticin resistance as selection marker.
    Gruber S; Omann M; Rodrìguez CE; Radebner T; Zeilinger S
    BMC Res Notes; 2012 Nov; 5():641. PubMed ID: 23158850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-efficiency transformation system for the biocontrol agents, Trichoderma spp.
    Herrera-Estrella A; Goldman GH; Van Montagu M
    Mol Microbiol; 1990 May; 4(5):839-43. PubMed ID: 2388561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation.
    Zeilinger S
    Curr Genet; 2004 Feb; 45(1):54-60. PubMed ID: 14586554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient transformation system for Trichoderma atroviride using the pyr4 gene as a selectable marker.
    Calcáneo-Hernández G; Rojas-Espinosa E; Landeros-Jaime F; Cervantes-Chávez JA; Esquivel-Naranjo EU
    Braz J Microbiol; 2020 Dec; 51(4):1631-1643. PubMed ID: 32627116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation.
    Cardoza RE; Vizcaino JA; Hermosa MR; Monte E; Gutiérrez S
    J Microbiol; 2006 Aug; 44(4):383-95. PubMed ID: 16953173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules.
    Folger KR; Wong EA; Wahl G; Capecchi MR
    Mol Cell Biol; 1982 Nov; 2(11):1372-87. PubMed ID: 6298598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and identification of DNA sequence flanking T-DNA integration site of Trichoderma atroviride mutants with high dichlorvos-degrading capacity.
    Sun W; Liu L; Hu X; Tang J; Liu P; Chen J; Chen Y
    Bioresour Technol; 2009 Dec; 100(23):5941-6. PubMed ID: 19577921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of two vectors for gene expression in Trichoderma reesei.
    Lv D; Wang W; Wei D
    Plasmid; 2012 Jan; 67(1):67-71. PubMed ID: 22056690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of Talaromyces thermophilus lipase gene in Trichoderma reesei by homologous recombination at the cbh1 locus.
    Zhang X; Xia L
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):377-385. PubMed ID: 28039549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.
    Yang VW; Marks JA; Davis BP; Jeffries TW
    Appl Environ Microbiol; 1994 Dec; 60(12):4245-54. PubMed ID: 7811063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. I-SceI-mediated double-strand DNA breaks stimulate efficient gene targeting in the industrial fungus Trichoderma reesei.
    Ouedraogo JP; Arentshorst M; Nikolaev I; Barends S; Ram AF
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10083-95. PubMed ID: 26272087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis.
    Zhong YH; Wang XL; Wang TH; Jiang Q
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1348-54. PubMed ID: 17021875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-homologous integration of transforming vectors in the fungus Podospora anserina: sequences of junctions at the integration sites.
    Razanamparany V; Bégueret J
    Gene; 1988 Dec; 74(2):399-409. PubMed ID: 3246350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals.
    Mach RL; Schindler M; Kubicek CP
    Curr Genet; 1994 Jun; 25(6):567-70. PubMed ID: 8082210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable allele replacement and unstable non-homologous integration events during transformation of Ascobolus immersus.
    Faugeron G; Goyon C; Grégoire A
    Gene; 1989 Mar; 76(1):109-19. PubMed ID: 2744477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium tumefaciens mediated transformation of ChiV gene to Trichoderma harzianum.
    Yang L; Yang Q; Sun K; Tian Y; Li H
    Appl Biochem Biotechnol; 2011 Apr; 163(8):937-45. PubMed ID: 20936373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient Silencing of DNA Repair Genes Improves Targeted Gene Integration in the Filamentous Fungus Trichoderma reesei.
    Chum PY; Schmidt G; Saloheimo M; Landowski CP
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28550064
    [No Abstract]   [Full Text] [Related]  

  • 19. Plant growth-promoting bacteria potentiate antifungal and plant-beneficial responses of Trichoderma atroviride by upregulating its effector functions.
    Guzmán-Guzmán P; Valencia-Cantero E; Santoyo G
    PLoS One; 2024; 19(3):e0301139. PubMed ID: 38517906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity.
    Skoneczny D; Oskiera M; Szczech M; Bartoszewski G
    Folia Microbiol (Praha); 2015 Jul; 60(4):297-307. PubMed ID: 25791292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.