These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 32948691)

  • 21. Symbol manipulation and rule learning in spiking neuronal networks.
    Fernando C
    J Theor Biol; 2011 Apr; 275(1):29-41. PubMed ID: 21237176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.
    Pecevski D; Maass W
    eNeuro; 2016; 3(2):. PubMed ID: 27419214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks.
    Martens MB; Houweling AR; E Tiesinga PH
    J Comput Neurosci; 2017 Feb; 42(1):87-106. PubMed ID: 27812835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A spike based learning rule for generation of invariant representations.
    Körding KP; König P
    J Physiol Paris; 2000; 94(5-6):539-48. PubMed ID: 11165918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning.
    Gillett M; Pereira U; Brunel N
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29948-29958. PubMed ID: 33177232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal computations of an excitable and plastic brain: neuronal plasticity leads to noise-robust and noise-constructive computations.
    Toutounji H; Pipa G
    PLoS Comput Biol; 2014 Mar; 10(3):e1003512. PubMed ID: 24651447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supervised learning in spiking neural networks: A review of algorithms and evaluations.
    Wang X; Lin X; Dang X
    Neural Netw; 2020 May; 125():258-280. PubMed ID: 32146356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting operational regimes of interest in recurrent neural networks.
    Ekelmans P; Kraynyukova N; Tchumatchenko T
    PLoS Comput Biol; 2023 May; 19(5):e1011097. PubMed ID: 37186668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.
    Puccini GD; Sanchez-Vives MV; Compte A
    PLoS Comput Biol; 2007 May; 3(5):e82. PubMed ID: 17500584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Realistic spiking neural network: Non-synaptic mechanisms improve convergence in cell assembly.
    Depannemaecker D; Canton Santos LE; Rodrigues AM; Scorza CA; Scorza FA; Almeida AG
    Neural Netw; 2020 Feb; 122():420-433. PubMed ID: 31841876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blindfold learning of an accurate neural metric.
    Gardella C; Marre O; Mora T
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3267-3272. PubMed ID: 29531065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning precisely timed spikes.
    Memmesheimer RM; Rubin R; Olveczky BP; Sompolinsky H
    Neuron; 2014 May; 82(4):925-38. PubMed ID: 24768299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable learning in stochastic network states.
    El Boustani S; Yger P; Frégnac Y; Destexhe A
    J Neurosci; 2012 Jan; 32(1):194-214. PubMed ID: 22219282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The tempotron: a neuron that learns spike timing-based decisions.
    Gütig R; Sompolinsky H
    Nat Neurosci; 2006 Mar; 9(3):420-8. PubMed ID: 16474393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks.
    Muratore P; Capone C; Paolucci PS
    PLoS One; 2021; 16(2):e0247014. PubMed ID: 33592040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasticity, learning, and complexity in spiking networks.
    Kello CT; Rodny J; Warlaumont AS; Noelle DC
    Crit Rev Biomed Eng; 2012; 40(6):501-18. PubMed ID: 23356694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.
    Shim Y; Philippides A; Staras K; Husbands P
    PLoS Comput Biol; 2016 Oct; 12(10):e1005137. PubMed ID: 27760125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational aspects of feedback in neural circuits.
    Maass W; Joshi P; Sontag ED
    PLoS Comput Biol; 2007 Jan; 3(1):e165. PubMed ID: 17238280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.