These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605 [TBL] [Abstract][Full Text] [Related]
3. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of spray application methods for navel orangeworm control in almonds. Markle JC; Niederholzer FJ; Zalom FG Pest Manag Sci; 2016 Dec; 72(12):2339-2346. PubMed ID: 27001707 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the Intelligent Sprayer System in Peach Production. Boatwright H; Zhu H; Clark A; Schnabel G Plant Dis; 2020 Dec; 104(12):3207-3212. PubMed ID: 33026954 [TBL] [Abstract][Full Text] [Related]
6. Comparison of different sampling techniques for the evaluation of pesticide spray drift in apple orchards. Briand O; Bertrand F; Seux R; Millet M Sci Total Environ; 2002 Apr; 288(3):199-213. PubMed ID: 11991524 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Li X; Giles DK; Niederholzer FJ; Andaloro JT; Lang EB; Watson LJ Pest Manag Sci; 2021 Jan; 77(1):527-537. PubMed ID: 32816397 [TBL] [Abstract][Full Text] [Related]
8. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469 [TBL] [Abstract][Full Text] [Related]
9. Deposition and distribution of myclobutanil and tebuconazole in a semidwarf apple orchard by hand-held gun and air-assisted sprayer application. An Q; Li D; Wu Y; Pan C Pest Manag Sci; 2020 Dec; 76(12):4123-4130. PubMed ID: 32578326 [TBL] [Abstract][Full Text] [Related]
10. Pesticide dose based on canopy characteristics in apple trees: Reducing environmental risk by reducing the amount of pesticide while maintaining pest and disease control efficacy. Xun L; Garcia-Ruiz F; Fabregas FX; Gil E Sci Total Environ; 2022 Jun; 826():154204. PubMed ID: 35235850 [TBL] [Abstract][Full Text] [Related]
11. Spray drift reduction techniques for vineyards in fragmented landscapes. Otto S; Loddo D; Baldoin C; Zanin G J Environ Manage; 2015 Oct; 162():290-8. PubMed ID: 26265598 [TBL] [Abstract][Full Text] [Related]
12. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece. Kasiotis KM; Glass CR; Tsakirakis AN; Machera K Sci Total Environ; 2014 May; 479-480():132-7. PubMed ID: 24561292 [TBL] [Abstract][Full Text] [Related]
13. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related]
14. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099 [TBL] [Abstract][Full Text] [Related]
15. The effect of air support on droplet characteristics and spray drift. Nuyttens D; Dekeyser D; De Schampheleire M; Baetens K; Sonck B Commun Agric Appl Biol Sci; 2007; 72(2):71-9. PubMed ID: 18399426 [TBL] [Abstract][Full Text] [Related]
16. Evaluating insecticide coverage in almond and pistachio for control of navel orangeworm (Amyelois transitella) (Lepidoptera: Pyralidae). Siegel JP; Strmiska MM; Niederholzer FJ; Giles DK; Walse SS Pest Manag Sci; 2019 May; 75(5):1435-1442. PubMed ID: 30430743 [TBL] [Abstract][Full Text] [Related]
17. Environmental attitudes and drift reduction behavior among commercial pesticide applicators in a U.S. agricultural landscape. Reimer AP; Prokopy LS J Environ Manage; 2012 Dec; 113():361-9. PubMed ID: 23062271 [TBL] [Abstract][Full Text] [Related]
18. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
19. Comparison of a new air-assisted sprayer and two conventional sprayers in terms of deposition, loss to the soil and residue of azoxystrobin and tebuconazole applied to sunlit greenhouse tomato and field cucumber. Li Y; Li Y; Pan X; Li QX; Chen R; Li X; Pan C; Song J Pest Manag Sci; 2018 Feb; 74(2):448-455. PubMed ID: 28898566 [TBL] [Abstract][Full Text] [Related]
20. Drift from the Use of Hand-Held Knapsack Pesticide Sprayers in Boyacá (Colombian Andes). García-Santos G; Feola G; Nuyttens D; Diaz J J Agric Food Chem; 2016 May; 64(20):3990-8. PubMed ID: 26479088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]