BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32949250)

  • 1. Outpacing movement - ultrafast volume coverage in neuropediatric magnetic resonance imaging.
    Gräfe D; Roth C; Weisser M; Krause M; Frahm J; Voit D; Hirsch FW
    Pediatr Radiol; 2020 Nov; 50(12):1751-1756. PubMed ID: 32949250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid sequence magnetic resonance imaging in the assessment of children with hydrocephalus.
    O'Neill BR; Pruthi S; Bains H; Robison R; Weir K; Ojemann J; Ellenbogen R; Avellino A; Browd SR
    World Neurosurg; 2013 Dec; 80(6):e307-12. PubMed ID: 23111234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-sequence MRI studies for surveillance imaging in pediatric hydrocephalus.
    Patel DM; Tubbs RS; Pate G; Johnston JM; Blount JP
    J Neurosurg Pediatr; 2014 Apr; 13(4):440-7. PubMed ID: 24559278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased Need for Anesthesia during Ultra-Fast Cranial MRI in Young Children: One-Year Summary.
    Sorge I; Hirsch FW; Voit D; Frahm J; Krause M; Roth C; Zimmermann P; Gräfe D
    Rofo; 2022 Feb; 194(2):192-198. PubMed ID: 34644801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid-sequence brain magnetic resonance imaging for Chiari I abnormality.
    Pan J; Quon JL; Johnson E; Lanzman B; Chukus A; Ho AL; Edwards MSB; Grant GA; Yeom KW
    J Neurosurg Pediatr; 2018 Aug; 22(2):158-164. PubMed ID: 29749883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image quality at synthetic brain magnetic resonance imaging in children.
    Lee SM; Choi YH; Cheon JE; Kim IO; Cho SH; Kim WH; Kim HJ; Cho HH; You SK; Park SH; Hwang MJ
    Pediatr Radiol; 2017 Nov; 47(12):1638-1647. PubMed ID: 28638982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved delineation of ventricular shunt catheters using fast steady-state gradient recalled-echo sequences in a rapid brain MR imaging protocol in nonsedated pediatric patients.
    Miller JH; Walkiewicz T; Towbin RB; Curran JG
    AJNR Am J Neuroradiol; 2010 Mar; 31(3):430-5. PubMed ID: 19942705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relevance of magnetic resonance imaging for ventricular endoscopy.
    Ernestus RI; Krüger K; Ernst S; Lackner K; Klug N
    Minim Invasive Neurosurg; 2002 Jun; 45(2):72-7. PubMed ID: 12087502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic performance of heavily T2-weighted techniques in obstructive hydrocephalus: comparison study of two different 3D heavily T2-weighted and conventional T2-weighted sequences.
    Ucar M; Tokgoz N; Damar C; Alimli AG; Oncu F
    Jpn J Radiol; 2015 Feb; 33(2):94-101. PubMed ID: 25559932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique.
    Lee JH; Choi YH; Cheon JE; Lee SM; Cho HH; Shin SM; Kim WS; Kim IO
    Pediatr Radiol; 2015 Jun; 45(6):840-6. PubMed ID: 25616364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSh versus TSE sequence protocol in rapid MR examination of pediatric patients with programmable drainage system.
    Brichtová E; Šenkyřík J
    Childs Nerv Syst; 2017 May; 33(5):753-758. PubMed ID: 28342115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic equivalency of fast T2 and FLAIR sequences for pediatric brain MRI: a pilot study.
    Jaimes C; Yang E; Connaughton P; Robson CD; Robertson RL
    Pediatr Radiol; 2020 Apr; 50(4):550-559. PubMed ID: 31863192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic volumetry of cerebrospinal fluid and brain volume in severe paediatric hydrocephalus, implementation and clinical course after intervention.
    Grimm F; Edl F; Gugel I; Kerscher SR; Bender B; Schuhmann MU
    Acta Neurochir (Wien); 2020 Jan; 162(1):23-30. PubMed ID: 31768752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of quick-brain magnetic resonance imaging in the evaluation of shunt-treated hydrocephalus.
    Iskandar BJ; Sansone JM; Medow J; Rowley HA
    J Neurosurg; 2004 Nov; 101(2 Suppl):147-51. PubMed ID: 15835101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies to minimize sedation in pediatric body magnetic resonance imaging.
    Jaimes C; Gee MS
    Pediatr Radiol; 2016 May; 46(6):916-27. PubMed ID: 27229508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time magnetic resonance imaging in pediatric radiology - new approach to movement and moving children.
    Hirsch FW; Frahm J; Sorge I; Roth C; Voit D; Gräfe D
    Pediatr Radiol; 2021 May; 51(5):840-846. PubMed ID: 33566125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospective motion correction in 2D multishot MRI using EPI navigators and multislice-to-volume image registration.
    Hoinkiss DC; Porter DA
    Magn Reson Med; 2017 Dec; 78(6):2127-2135. PubMed ID: 28983957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dispensing with sedation in pediatric MR imaging of the brain: what is feasible?].
    Heyer CM; Lemburg SP; Sterl S; Holland-Letz T; Nicolas V
    Rofo; 2012 Nov; 184(11):1034-42. PubMed ID: 22872604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressed Sensing for Breast MRI: Resolving the Trade-Off Between Spatial and Temporal Resolution.
    Vreemann S; Rodriguez-Ruiz A; Nickel D; Heacock L; Appelman L; van Zelst J; Karssemeijer N; Weiland E; Maas M; Moy L; Kiefer B; Mann RM
    Invest Radiol; 2017 Oct; 52(10):574-582. PubMed ID: 28463932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.